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ABSTRACT \e o 75‘

Properties of linear passive media are investigated by using a phenome-
nological approach, Properties of fields that can propagate in a passive
medium are postulated and from this properties of the constitutive relation-
ship are deduced, A necessary positive real condition on the constitutive
relationship is found and some of its implications are considered, Also, the
causality condition which is necessary for realizable media is considered,

Next a general formulation of the spectrum of characteristic waves in
lossless linear passive media is made. Because of an orthogonality condition
for the characteristic waves of the medium, the fields due to an arbitrary
source can be separated into components parallel to the characteristic waves,
The components of the source field are dependent only upon the portion of the
source.parallel to their characteristic field and to their own sheet(s) of
the dispersion surface, The theory is then applied to two particular problems,
electric dipoles in a general time-dispersive uniaxial medium and in an iso-
tropic compressible plasma, Finally, the radiation field of an arbitrary source
in a lossless linear passive medium is investigated using the spectral decom-
position of the fields, By normalizing the length of the Total Poynting vector
(electromagnetic plus medium) to unity for each characteristic field, a copcise
and physically interpretable expression for the source fields is obtained,
These results are then applied to an anisotropic compressible plasma and to a

L

magneto-ionic plasma,
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1., INTRODUCTION

One of the most simplifying and useful properties of Maxwell's equations
is the linearity property. However, the linearity property in the past has not
been exploited to its fullest, Of course Maxwell's equations will not be linear
if the medium is not linear, Thus, in all that follows a linear constitutive
relationship will be assumed,

To the author's knowledge, the most general linear constitutive relation-
ship that Maxwell's equations will allow has never been used, There is, however,
considerable motivation to formulate such a theory. In most cases the permit-
tivity, €, and the permeability, p, are considered to be scalar constants, This
was probably the original formulation of the constitutive relationship, Then -
these scalars were found to be functions of the applied frequency which gave rise
to time-dispersive media, From this, it is found that the group velocity and
phase velocity are not necessarily equal but are in the same direction, 1In crys-
tal optics the permittivity constitutive relationship is given by a diagonal
matrix, €, while the permeability, p, is still a scalar, Two such media that
occur in nature are uniaxial and biaxial crystals, More recently a considerable
amount of the literature has been devoted to magnetoplasmas which occur in the
ionosphere and can be created artificially in the laboratory, Magnetoplasmas
are characterized by a matrix permittivity and a scalar permeability, They may
also be space and time dispersive, i,e,, the permittivity matrix a function of
the Fourier wave vector,'?, and the Fourier time number, w, respectively, Also,
there exist materials such as ferrites that are characterized by a scalar per-
mittivity and a matrix permeability, Further, uniformly moving media has an

even more complicated constitutive relationship, 1In a moving medium, the



electric flux density, D, is linearly related to both the electric intensity,
E, and the magnetic intensity, H, A similar dependence results for the magné-
tic flux density, B, These are a few examples of well-known media of nature;
however, the possibility of creating artificial dielectrics gives impetus to
investigating the general properties of linear passive media, Moreover, the
synthesis of media with given space and time-dispersive characteristics would
be highly desirable,

A large number of workers in the area of magnetoplasmas attempt to derive
a macroscopic constitutive relationship of the medium by formulating a micro-
scopic model that is describable by dynamical equations and/or probability dis-
tributions, Thus, they attempt to deduce ;he macroscopic properties of the
medium, and hence the fields that can propagate in them from a postulated
microscopic model, This is not the only method of deducing properties of the
medium. Another very effective method is to postulate properties of fields
that can propagate in the medium and from this deduce the properties of the
constitutive relationship of the medium, This phenomonological approach will
be the method used to investigate the properties of passive medig,

Since Maxwell's equations are linear, the spectral theory and represen-
tation of the operators that compose Maxwell's equations for a lossless medium
will be useful, With this the spectral representation of both the source-free
and the source fields can be derived, 1In this way, the specific role played
by the sheets of the dispersion surface and their dssociated characteristic
fields is easily seen, Also, the manner in which the source excites the spec-
trum of characteristic fields to form the composite source field can be deter-

mined,
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In Section 4, by using the spectral representation, the exact expression
for the fields of a dipole in a general time-dispersive uniaxial medium will be
derived, These expressions are then compared with Clemmow’s1 fields in an
uniaxial medium, which he obtained by a scaling procedure. Section 6 is con-
cerned with the radiation field of an arbitrary antenna in a lossless medium,

The purpose of this thesis is to exploit the linearity of Maxwell's
equations and thereby deriye general relationships for linear passive media

and for the fields that can propagate in such media, Further, the usefulness

of the general relationships are demonstrated by specific examples,




2, PROPERTIES OF LINEAR PASSIVE MEDIA

2,1 Maxwell's Equations as Six-Vectors

Most commonly, Maxwell's equations in point form are expressed as two
separate vector equations, Ampere's Law and Faraday s Law, The vectors in-
volved have three components, However, this separation is by no means unique
nor necessary. With equal ease, one can express Maxwell's equations as six-
vector equations involving vectors with single components only,

Likewise Maxwell's equations may be expressed as a single vector equation
involving vectors with six components, This is the formulation that will be
introduced presently and will prove to be of an ideal form for many purposes,

particularly for conservation of electromagnetic energy, Define the partial

differential operator (¥ and the six-vectors & , 3; and %? as follows:
& O \7\!
- i (2,1
!~-\/‘x‘ /\i 2.1)
§ J
i
F=1E& . 7 2.2)
I

[@969 (2.3)

=+

& Jerdm

The subscript "“f" is meant to signify flux since the units of . involves

f
"per square meter,’ With these definitions, Maxwell's equations are simply
G7 T8 (2.5)
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2,2 Definition of Constitutive Relationship

As easily seen, this vector equation has more unknowns than its order
and hence is indeterminate. The constitutive relationship yields the remaining
equations of the system, Essentially, the consitutive relationship is a
statement of the influence of the material medium on a wave propagating through
it as compared to the wave propagating through a vacuum, As such, the source
is not involved in the constitutive relationship, One would like to formulate
a mathematical expression for the constitutive relationship that would encompass
the general class of linear media., In the real space-time domain, say R, such
a constitutive relationship must be a matrix convolution operator, denoted 2!?.

Then the general linear constitutive relationship is

?f =Z’*3 2.6)

where the convolution is with respect to all four variables of space-time, It
can be verified that this expression is capable of accounting for the scalar,
uniaxial, biaxial, magneto-ionic, ferrite, and uniformly moving media that were
previously mentioned, Furthermore, the general linear constitutive relationship
applies to transient fields as well as steady-state fields whether sinusoidal
or otherwise,

In light of the complexity of the convolution linear operator, which in-
volves integrals of the "operand,” F , at times it is preferrable to deal with
the system of equations in Fourier transform space, ﬂ-. Throughout the fol-

lowing, the definition of the Fourier transform and its inverse transform will

be, respectively,

- © _i(wt:;v_f») 3
Fikw)= [ff[¢€ F(r,1)d rdt @.7
-



and

% > >
3"(r’,t)=(27f)4fffe"“"'k")F(T,w)d:’kdw (2.8)
oo

-
where the transform variables are « and k, Let the Fourier transform of <y;,

@, 1‘7 , and 0 be, respectively, F

system of Maxwell's equations and the constitutive relationship are

£ C, E’ and O, Then in space gﬁ—the

OF = wF+C (2.9)
and
Fe =UF (2.10)

What is gained by such a transformation is the following, The operators are
simply square matrices of order six with elements which are functions of the
-~
transform variables @ and k, Also make the distinction between space-disper-
. . . . . . 2 L .
sive and time-dispersive media as Allis does for magneto-ionic media, the
. ——
constitutive matrix U as a function of k and w implies that the medium is space-
dispersive and time-dispersive, respectively, In truth the names space and
time-dispersive media are misnomers since dispersion is a property of the whole
system and its dependence cannot be separated among the space and time varia-
bles, A non-dispersive medium is one whose dispersion surface is hypercones
with their vertices passing through the origin in space @ . Thus, it is pos-
sible for a space and/or time-dispersive media, as defined above, to be non-

dispersive,

2.3 Waves in Passive Media

The general class of linear media is larger than necessary for most pur-

poses, In fact the homogeneous media that commonly occur in distributed




systems is passive, (A passive medium is defined to be a medium in which both
the electromagnetic energy density stored and the power density dissipated for
all fields are non-negative,) For this reason, in all that follows we will
restrict our attention to'passive media, First, however, it is necessary to
recognize the properties of passive media in order that the two classes may be
separated,

For either péssive or active media, the totality of fields (waves) that
can propagate through it uniquely characterizes the media, Even certain sub-
sets (complete sets-subsets of the propagating waves that span the totality of
fields for the medium) of the totality of fields may suffice to characterize
the media. An example of a complete subset is the set of plane waves, Even
so, all plane waves are not admissable in passive media, Thus, we would like
to determine the properties of the waves that can propagate through passive
media and from this determine certain characteristics of the constitutive rela-
tionship. Neither Maxwell's equations nor the constitutive relationship will
aid in determining the class of fields we seek, The remaining equation that is
essential to determining whether or not a wave is propagating in a passive or
active media is the conservation of energy. Multiplying Equation (2.5) on the
left by F and transposing terms gives the equation of conservation of electro-

magnetic energy,

FF FOF--FE€ (2.11)

o B4,
3 pue VB B (2.12)

s

where the superscript T signifies the transpose, Identification of the cor-

responding terms results in
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T Ide
'? e = ot » rate of change of electromagnetic energy density
supplied by the sources,
T T
—7 @:7‘ V @e ; divergence of the electromagnetic Poynting vector,
T 5 oW
Ef aﬁf: ’j;?"*}bde ; rate of change of stored electromagnetic energy

density plus the dissipated power density,

A further identification of the rate of change of stored electromagnetic energy
density and the dissipated power density can be made provided the operator ?f
is split into the sum of two operators, In the transform space, jr , i1t can be
shown that the rate of change of stored energy is associated with the Hermitian
part of the operator E, while the dissipated power density is associated with
the skew-Hermitian part, Thus, it is only necessary to transform the Hermitian

and skew-Hermitian operators back to the space-time domain, R, in order to ob-

tain the separation there, i.e,

_?fs :%‘[__7:_/)(?,1)+:?_/°T(-—?,—1)} (2.13)

and
9. - H?_/’(?,t)—_@’T(-?,-r)] 2.10)
I'hen we have
P e 2

and

?T(?/Z*?’Mﬁ@de (2.16)

Iy
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Now the separation into passive or active media can be made by determining
whether or not both the stored and dissipated electromagnetic energy densities
of all possible fields in the media are non-negative, This will be an essen-
tial factor in proving a necessary condition "positive real" theorem for the
constitutive relationship of passive media that will be considered later,

At this point let us determine a property that all plane waves in a pas-
sive medium must obey., For a source-free passive medium, the net energy flow
intc a closed region must be non-negative. Since the closed region is arbi-
trary, this implies that the integral with respect to time of minus the diver-

gence of the Poynting vector for any field is non-negative, i.e,,

-f'VT@dtZO.

Also, since the field is arbitrary, the condition should apply to a plane wave

ci the type
F:2Re 2.17)

where
:?':yoe (2.18)

:;o is an arbitrary complex vector field which is independent of space and time,

L P
So =0p+jw,, and A Qoo-‘ko

-VT@e = }'T(?ff (2.19)

Eut

0F=2Re0, 5 (2.20)
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where
%
C Yrx
0, * [-_r;x UO] (2.21)
Therefore,
T + T
-V, - Re[&’,oo?n“?% OOSf,] (2.22)
or
2(0:t —670 )

STV, T )
-V'g, - 2Re [ytoo?oe +30,%e ° ] (2.23)

Let o, > 0 and time, t, be much larger than any characteristic time of the

system; then the above inequality is approximately given by,

toT 2(0pt- dot) . T o (w. t-K, f)
[V Rdi=~e" ' Re [‘5%033{0*‘;—0%0@%9’ >0 @.29)

—
Ot - Cug-
Since 62( of ¢ ) 2 ()

then

—

LT 2l kg
Re| = F 0., = F,0,5¢ 20 (2.25)

The second term of Equation (2,25} may take both positive and negative values;

therefore, the first term must be non-negative. In other words,

Re ?TOOG" 20 (2.26)
(7500 %)

+ -7 = -
But R{‘[:f-coayo ‘4Q0Pe where F‘e ='3Re EOXH: is the real part of the
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complex Poynting vector, Now we have the desired result that for Re s, >0
then Ez Fe > 0. The result is as intuitively as one might expect; in a pas-
sive source-free medium the fields decrease in the direction of the average

power flow,

In addition, since the conservation of total emergy is also applicable,

one has

T 04T
-‘a..{-_ + de + \/.'jép.r = —-—a—:(—- (2.27)

Therefore, the difference between conservation of total energy and the conser-

vation of electromagnetic energy is also a conservation law, That is,

0 o4

where
W, = Wy - W (2.29)
Pdm = PdT ~ Pae (2.30)
Pm=Fr - Fe (2.31)
and

Am = AT - A.e (2,32)

The subscript m is to denote medium energy density, medium power flux, and so

forth,

Naturally all of the conservation laws may be expressed in transform space,

T ; however, it is sufficient to only deal with the transform of the conservation
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of electromagnetic energy, Then

~

~ ~ 2T ~
where the tilde indicates the transform of the quantity,

2.4 Lossless Property of Media

Consider a harmonic electromagnetic field of the form

¥ - Re [?Oej<wf—k»,r)] . 30)

with

- —-»

Fi-re [jwulk,wiF el %] 2.35)

By averaging the quantity \f Eﬁ with respect to time and equating this steady

change in energy to zero, we can arrive at the condition for lossless media,

jwt . .
The terms involving eiJw will have a zero average, leaving

[Dﬂ( WYUK, W) T+ Fo (jw wy(K, W) 7, } - (2. 36)

or

jwF [ K-yt w)}?—’ozo (2.37)

But 2;; is arbitrary and hence the constitutive matrix is Hermitian for real

-

w and k, i,e,,

-
x|
3
[
=
S

(2.38)

2.5 "Energy' Condition and Group Velocity3

—s
Consider a lossless medium., Hence, for real w and k we have,
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- T, -
Ulk,w)=U (k,w) (2.39)
and
- 1‘-0
O(k)=-0(k) (2.40)
Therefore, the matrix operator Z?(E,w) defined as,
MK, w)=0(k)-jwU(k,w) (2.41)

is skew-Hermitian, A source-free solution to Maxwell's equations, F, in space

tr' exists when

ﬂZ(F,w)F(R,whO (2.42)

or

Y/ A/ A /e 2.43)

Allow small perturbations to occur in w,i and the medium such that

W, = w+dw (2.44)
and
-k’, = k + 8k (2. 45)

Then a new field solution Fl(El,wl) may be obtained for the perturbed system

such that,

m, (k, ,w,)F, (k,,w,)=0 (2.46)
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7"1 is not required to be skew-Hermitian, Because the perturbations are small,

however, we can write
’ﬂ[l(_k:,(u,h m(_l:,w)+8w§5M(k,w)+S—l;Vk m_(k’W)+8m(k’w) (2.47)

-
where 87OUVLU) represents any perturbation of the medium not due to a change

in w or ﬁ: Therefore, by using Equations (2,46) and (2,47) one obtains,

FT[?T( +3w aaw m+ 8?-.Vkm+8’)72]ﬁ=0 (2.48)
However, from Equation (2,43) it is seen that
FTME <0

(s 2. 49)

and hence

F*[sw—a%m+87-.vkm+8m]f—‘l=o (2.50)

Since all of the terms in the brackets are small, the difference between F. and

F may be neglected, yielding,

F+[8w—5%77(+81’:vkm+8772]F=0 (2.51)

Now let us consider each term of Equation (2,51).

t Lt =
F E%WF:'IF _aaa_(wg)ph]qw (2.52)

W is a generalization of what is commonly called the average electromagnetic

energy density due to a harmonic field, This is discussed further in Section
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2,9, From the second term we have

F +[\7k771]F =4j [ﬁ-*ﬁm} 2.53)

where,
Pp=-4iF [\7 o] :/2Re[ExH"] (2.54)

electromagnetic Poynting vector for a harmonic field

i

and

5m=-%w Ff[vkg]F (2.55)

medium Poynting vector for a harmonic field.

The third term reduces to
F+[87I]]F=—jwf-‘+[8l=l]l-' (2.56)

Putting the component terms back into Equation (2,51) gives,

5 2
Sk-(R+Py) - Sww+— wF [GUJ (2.57)
Now for an unperturbed medium 5g= O, and we see that the group velocity is
given by,
- 8&) _ . _
9 g: "vkw Pe+Pm /W (2.58)

Also when Sw =0 si,e,, when the refractive index surface is given for a
fixed frequency, the group velocity and the total power flux vector ET = Fe+§m

are normal to the dispersion surface,. It should be emphasized that the only

stipulation made upon the medium is that it be lossless,
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2.6 Onsager's Property

For the sake of completeness let us mention Onsager's principle as applied

to the constitutive relationship, If the sixth-—order matrix W is

I O
V=V-'-[5*I] (2.59)
the Onsager's property can be expressed as
T~ P — —
U (k,w,Hy)= V_\_/g(k,w,—Ho)g (2.60)

. . 4 . -
For a description of the details refer to Onsager, Melxner,5 Ca51m1r,6 or

De Groot.7

2,7 Real Property of Media

Since both the field strength F and the flux field :xf are real valued
vector fields, the definition of the transform and Equation (2,6) implies that

there exists a real property of the medium, namely,

*( -

—_—
Y)=U(s™, ) (2.61)

| e

where the star, x, indicates the complex conjugate, and s = g + jw and §?= jﬂf

More explicitly,i% and Gﬂ real implies that

* > *'a¥
Fo(s,Y)=F(s",r") (2.62)
and
Fi(s,y)= F(s* v (2.63)
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respectively. But the constitutive relationship implies
Fe(s,Y)=U(s,7)F (s,7) (2.64)
Therefore,
% - »* - * --
Fels,Y)=U (s,7)F (s,7) (2.65)
and
Fg (s",7%) = U (s*,;*)F*(s ,; ) (2.66)

Subtracting Equation (2.66) from (2.65) and using Equations (2.62) and (2.63)

results in

- e 3 1 -
0= [g*(s,n-g(s*,r*)_i F*(s.7) (2.67)

* -
The vector F (s, ) is arbitrary, however. Therefore,

g*(s,;) =u(s",r" (2.68)

An immediate consequence is that if the constitutive matrix U is independent
of both s and iﬁ then it is a real matrix. This property does not seem to

have been fully exploited in the literature.

2.8 Positive Real Property

It is quite well known that the necessary and sufficient conditions for a

function to be the driving point impedance of a linear passive network is that

the function be a positive real function as originally defined by Brune8 in

1931. At that time Foster had already presented a method for synthesizing
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certain types of one port networks, This greatly reduced the difficulty of
the sufficiency proof, The significance, however, of Brune's positive real
theorem was that it established a logical foundation for and an impetus to the
development of network synthesis, Also, it has been established that the
impedance and admittance matrices of passive networks are positive real
matrices, With this as a background, it would be desirable to establish
similar necessary and sufficient conditions on the constitutive matrix or
perhaps some function of the constitutive matrix for passive media, The de-
gree of difficulty of such a proof over that of Brune's for networks will be
enhanced for at least two reasons: (1) Very little is known about synthesis
of media, particularly the synthesis of dispersive properties; (2) The proof
will include the wave vector ﬁ as a parameter and thus will require extra con-
sideration and conditions upon it., Heuristically, one might expect that in
the 1imit as the wave vector ? approaches zero or as the wavelength approaches
infinity a correspondence exists between the properties for passive media and
passive networks,

Let us now establish the necessary “positive real” property of passive

media as a theorem,

. . , > > .
Theorem 2,1: The function of the constitutive matrix Z(s,y) = sg(s,Y) is a

"positive real" matrix for a linear passive medium,where s = O + jw and ¥

I
("
'

are the complex transform time number and space vector, respectively; i,e.,
* .y * %
1 Z7(s,y)=2(sTr¥)

2) Res2C implies Re.}”TZyZO,Vy
Note that the restriction of ? = jE’where'§ is real is necessary for the convo-

lution operation in space-time which gives l¥f=2f)*:¥ to exist,
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Proof: Part (1) follows immediately from Section 2.7 and the definition

Z(s,;). That is,

* - * *

Z (s,7)=s u (s,;)=s

*

* ¥ %* o%
Uls ;7 )=2(s ,7 )

Recall that

0w, T

Z e - F'F (2.69)
+ -

at fde f

Both%‘e(t) andf de(t) arecpositive definite or semidefinite for fields in

passive media; therefore,

t t
T .
We (1) +f¢>dedt= f’ff’ Fedt + Welt)20 (2.70)
to fo
This is true for any field; thus, it should apply to any particular field. Let
> -
(sat-%r)
a particular field be }' = 2Re TT'. where '},: r3"0e o and 3‘0 is a

complex field vector independent of space and time. The flux field is then

Fi= P F (2.71)
or
F¢ =UF (2.72)
Now
F=FoBls-so)8(0-7, )¢ 7 5 8(s-5,)8(7-7, ) (2.73)
and
Fe=Uls,7) Fodls-s0)8 (F-T, )+ Uls,7) F 8(s-s 180T 2. 70)
Therefore,

Pviling %x >x-
> (Sat-74 r) % =% (sat=74 1)
Fe=Ulso, %) Foe o e * U(sy,7,) ?;e ° 70 T(2.75)
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However, because of the real property, g(sg’;gf) - —Q-*(SO'YO) , the flux
field and its time derivative then becomes, respectively,
yf=2Re[g(so,—)Z)%e(s°"ydﬂ (2.76)
and
Y (sot ¥ 7
94; =2Re[2(so,_)2)yoe sol='o )] (2.77)
Now it is easily shown that
T .9 - "' —- T —
F 3= 2Re|d, 2Us, N A+ ¥ 25, Yo)ff,] (2.78)
or
TS — T — . 3.7
& % =2Re [9% Z(56: ) B 20"+ 3, 25,7 ) F &% % ')] (2.79)

Using the expression given in Equation (2.79) as the integrand of Equation

(2.70) and integrating results in,

L pt >y 200, | T 2ls t-Yy 7)
Re%gyo Z(So.)a)yoe ° +'S_o_y02(aosyo)yoe °

- t T e 28
'Re[&%ygl(so ,)('))9%920’0 0..*._5'?_?0 Z(So,yo‘)%eﬂso'o A )] (2.80)

+ 2 (1,) >0

For oo > 0 and for t large enough, the values at to’ i.e., exp (2 ooto) and
exp (2 Soto)’ are small compared to those at t. Also the electromagnetic

energy density at t_, &ﬁ{(nﬂ, is small. Then
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- - 1 t-:n-ﬁ
%' Re[o-% ?IZ(SO%)%"'E'; %TZ(SO,’S)%eZI(% o ]20 (2.81)

and

— — N "k" s
Re[% 932(50,)3)95,+Lsoargzwo.ro)yoez“%', ° r)] 20 - (2.82)

Since the sccond term of Equation (2,82) takes both positive and negative

values, the first term must be non-negative, i.e,,

Re 5,20 implies Re[G‘:Z(so,Z)S{,] 20, V3 (2.83)

> .
Therefore, as was to be proven, the matrix Z(s;vs = s U(s,¥) is a "positive
" .
real matrix,
In practice it is difficult to prove or disprove that a medium satisfies
the positive real condition from the definition alone, For this reason let

us prove a lemma that will facilitate this work.

Lemma 2.1: Let Q(A) = XT A X and Q(AD) = X+ AD X where X is an arbitrary

vector, and AD is the diagonalized matrix of A Then Re s > 0 implies

Re Q(Q) > 0, vX if and only if Re s > 0 implies Re Q(AD) > 0, vXx,

Proof: Let T be a matrix whose columns are eigenvectors of A, Also, let T
be normalized such that TT-T = I. Then when the vector Y of the transforma-
tion X = TY takes all possible values, X takes all possible values and vice

versa, But

xtax=(1viary = vitan v =Y'a Y VXY  (2.80)
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Therefore,

Re s 20 =» ReQ(A)20, VX 1f and oniy if Res20 =>ReQ(A )20, VY (2.85)

Thus, to prove the positive part of the "positive real” theorem, it is
sufficient to show that for Re s > 0 the real parts of the eigenvalues of

Z(s:§3 are greater than or equal to zero.

2,9 1Implications of the Positive Real Property9

Several implications are a direct result of the positive real property.
For instance, it is possible to derive a result analogous to Foster's reactance
theorem, Before doing so, however, let us consider the average electric energy
density in a lossless medium, [t is quite commonly stated that the average

electric energy density of a harmonic field at frequency w is

(w

(V) ET 2iml NGNS (2.86)

This equation is only an approximation, which to be sure is a better approxi-
mation than (1/2)E1.g E. But the energy density is dependent upon the entire

" history of the fields in the medium. Therefore, one would expect that the
energy density at frequency w be a function of all of the derivatives with
respect to w, depending on the manner the amplitude rises from zero. It is not
even intuitively obvious why the approximation given by Equation (2,86) should
be a positive number, The following theorem will prove it to be the case for
lossless passive medium,

Theorem 2,2: For a lossless passive medium,

+i L (WY (wk)F2 VF (2.87)




.
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Proof: Let Q(s,K) be defined by Q(s,k) = F Z(s,K) F. For s = jw, Q(s,k)
— ——p
is imaginary since U(w,k) is Hermitian, Expand Q(s,k) in a Taylor series
about a point s = jw and evaluate it at the point in the right half plane
S =85 .
o
Qls,, %) -Q(jw,;K) = 2"' Q‘S "’| (so=jw) (2.88)
As s0 approaches jw, the first term of the series will be the predominant
term., Define the following terms,
- -t
Q= 0rg|Q(sg,k)-Qljw,kK) (2.89)
B=arg [so—iw] (2.90)
.
)’:Qrg[_a_oiiszl‘.)_.‘ ] (2.91)
0 sTjw
Therefore, in the limit Equation (2,88) requires,
,flm.a =leﬁ+y (2.92)
Séﬂw S6>)w
The "positive real” condition requires that Io.l < n/2 for 'ﬁl < /2.
Therefore, for Equation (2,92) to be satisfied, y must be zero, Hence,
pals,k) | 5 (2.93)
d sTjw ™
or
- [F*(wu(w, k))F] >0 (2.94)
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But since F is arbitrary, we have the final result
-
F*[gaw—(wg(wkk))]F >0, VF (2.95)

Now it is a trivial matter to see that Equation (2,86) is a special case of

Theorem 2,2,

A few important residue conditions that are a result of the "positive

real" condition are as follows:

Theorem 2,3: (1) There are no poles of F*-Z(S;E) F in the half plane Res > 0,

-(2) The poles of F*'Z(szt) F on the jw axis are simple and the

residues are positive real,

Proof: Assume that there is a pole of order n at s = so,Re sO > 0, The

Laurent expansion of Q(s) = F+'Z(s;§) F in the neighborhood of the pole sO is

of the form

2] .
i .
Q(s)=) a;(s~s,) (2. 96)
iz-n
If s is sufficiently close to S.» the term corresponding to i = - n is predomi-
nate, Then
&) ~v |G~ﬂ| S, , N
Re Q{ )N—IS—_S——IE— cosfaraia_ )=nara(c-s,) (2.97)
ol )

Since arg (a_n) is independent of s and arg (s - SO) ranges from O to 27 for
Re s > 0, then the dominant part of the Laurent expansion changes sign 2n times
in the neighborhood of So' Therefore, there exists and s such that Re s > 0O
and Re Q(s) < 0, But this contradicts the "positive real" theorem and thus

—
there can be no poles of F+.Z(s,k) F in the half plane Re s > 0, 1If so = jwo,
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then the dominant part of the Laurent expansion satisfies the "positive real"

+ —
theorem when arg (a_n) =0 and n = 1, Therefore, the poles of F' Z(s,k) F on
the jw axis are simple and the residues are positive real,

Another theorem follows from Part (2) of Theorem 2,3,

Theorem 2.4: The matrix of residues of Z(S;E3 at any poles on the jw -axis must

be positive definite or positive semidefinite,

-
Proof: Let the vector F be real and s = jwo be an arbitrary pole of FT Z(s,k) F

on the jw —-axis, From Part (2) of the previous theorem, such a pole must be

L

——
simple and the residue of FT'Z(s,k) F be positive real, Therefore,

Residue [FTZ(S, k)F] = Lim (s—jwo)FTZ(s,T)F 20 v rea F (2.98)
. S+juwo
= FT[,ﬁim(S*jwo)Z(s::)]F >0 Y realF
S S—jw, N
But 1lim (s-jwo)Z(s,k) is the matrix of residues of Z(s,k) at s = jwo. There-
5 -»jw
o

fore, the theorem is complete,
One other condition upon the constitutive relationship, which is implied

by the "positive real” theorem, is the following:

>
Theorem 2.5: The matrix of the real part of Z(s,k) must be positive definite

or semidefinite for Re s > 0,

-
Proof: Since Re [F+ Z(s,k) F] > 0 VF for Re s > 0, it will certainly be

valid for F real. But for real F, the Re operator commutes with F,

Re [F+Z(s,k—’)F] =F' [Re Z(s,_i)]F (2.99)

5



Therefore,
. T >
Re s>0 implies F [ReZ(s,k)JFZO

and the theorem is complete,

Let us verify that the cold magneto-ionic medium satisfies the

26

(2.100)

"positive

real” conditions, For such a medium the constitutive relationship may be

given by a matrix of the form,

<
W
1M
O
| MEER—

O puf
where

e €’o
S: _6”6/0

0 0¢€

and

S+ 2vsh (v2+wﬁ+w§ )s +7/cu,21 )

/
€= (€,/5)
° se+2vsHr2+w?)

wﬁ ‘US )

sz+2vs+(vz+w,‘°;)

€’ (€, /s)(

2
S+Vs+wp )

S+V

€= (€, /5) (

(2,101)

(2,102)

(2.103)

(2,104)

(2,105)

Since all of the parameters of Z(s) are real, it is readily apparent that the
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real condition is satisfied, i.e., Z(s) = Z* (s*). The six eigenvalues of
Z(s) = s U(s) are,

2
€ W
o “WN

: € §+ —m————— (2,106
)\1,2 °s S+(1/j:ij) )

2

w
A =€ s+-€_°_N_ (2.107)

3 0 s+v
=L S 2.108
>\4,5,6 o ( ‘

while the real parts of the eigenvalues are
2

€ wgl{o+y

Re[)\ ]=€°0'+ o N, ) 5 >0 020 (2.109)
12 (C+V)2+wiw )2 =

\ €WS O
Re Ay =€°O’+o_ ' 20, o>0 (2.110)
= o> > (2.111)

Re[)‘ms,s] H 020,020

Therefore, the cold magneto-ionic medium satisfies the positive real condition,

2 .10 Causality Property

The energy condition is not sufficient for a constitutive matrix to repre-
sent a realizable passive medium, Even though there exists a causality condition
for circuits, it does not play as important a role as the causality condition
does for distributed systems, the reason being that the velocity of propagation

is assumed to be infinite in circuits, In distributed systems in which
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characteristic lengths may be large compared to a wavelength, causality implies
that the wave front can travel no faster than the velocity of light in a vacuum,
Hence, causality for distributed systems should be stronger than causality
for circuits, And one might even expect that if the velocity of light in a
vacuum were mathematically forced to approach infinity the causality condition
for distributed systems would approach the causality condition for circuits,
Thus, the problem is to use the causality condition to derive extra necessary
conditions upon the constitutive matrix for realizable passive media,

Consider an infinite homogeneous passive medium in which a Dirac delta
electric or magnetic current source both in space and time is placed at the

origin of a coordinate system, Then causality states that for the fieldifr(;:t),

AT =0 for 1-%<0 (2.112)
. . . . Cy —

where c¢ is the velocity of light in a vacuum, (r,t) may be represented as

a Laplace transform in time,

.+ i®
- R St
j(ﬁt)-('/ZTfJ)fF("r’,s)e ds (2.113)
%-jo

where GO is a finite constant for which F(?:s) has no singularities in the half
plane Re s > OO > 0. Evaluate Equation (2,113) for t - r/c < O by closing the

contour in the right half plane, Then we have

U g(t=tm
FT) = (<172n)) fim /F(?Ts)eccS( lgs:0 . t-L-<0 (2.114)
Ra»erR

where CR is a semicircular path in the clockwise direction of radius R, Assume




.
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that the integrand satisfies Jordan's lerma, ie ,
* M(T)
IF('F,s)e ISW— when IsI>R, for Re s >0} (2.115)

—
where K is a positive constant and M(r) is some vector independent of s, Then

) - I Res
'F("r",s)lg—"fs“l—[)-e ¢ 2.116)

when ,s' > Ro’ Re s 3> Uo’ for all.;f Therefore, we expe:t that for any reali-
zable medium the Laplace time transform of the fieid due to a Green's {Dirac
delta) source should obey this necessary condition Note that it is easy to
verify that a vacuum medium satisfies this conditionh

Since it is difficult to fiﬁd a more explicit condition upon the zonsti-
tutive relationship for an arbitrary mediur, assume that the medium is isotropic,
Also assume that the elements of the constitutive matrix are ratios of two

-_—
polynomials in the variables s, and k. Let,

det(0O-sU)= D(s k) (2,117

det g=D’(s.‘r\;/Dz(s.n} (2.118;
3 NisTh)

Naziy) = =15k} (2.119)

(3=34) D{s.k)

where Dl(s,k) and Dz(s,k) are polynomials in the variabies  Now we have,

L Dy s, k) N(s )
(0=l = 5 apts.0

(2.120j
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o
with the elements of D2(s,k) N(s,k) as polynomials in the variables, Therefore,

the field due to an arbitrary Green's source éJ(F:t) =C &§(M) 6(t) is

m —
- Do(s,k)N(s,k)C _:&.7.3
2\ = AR ] )
- e d k

F(7,s) = (277) M Dz(s,k)D(s,k) (2,121)

[OF

= (27 [D(S,N)N(S,V)] fff g7
D(Sk (s,k)

-
since the elements of Dz(s,k) N(s,k) are polynomials. By integrating in polar

coordinates over the two angles one obtains,

(¢9]
-jkr
Flr,s) =j(2my {D(s V) N(s, V)}C :/‘e——ﬂ—-— (2.122)
' I J J 2 Dz(s k)Dls, k)

And finally a contour integration yields,

-jan)r

| . _ k é
o . ko (2.123)
(*.5) {oz(s,,v)g(s,l )]CZRes'd”e {Dz(s,k)D(s,k)}27T'

where kn(s) is a root of Dz(s,k) D(s,k) = O that satisfies the radiation condi-
tion. Therefore, by comparing Equations (2,116) and @.123) we find that for an

isotropic medium,
Re[jk,.(s)] >c'Re s, Isi>R,, Res§ 20, , vn (2.124)

where kn(s) is a root of the determinantal equation




»
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det[O(T)—s__Q(sz)}O (2 125;

that satisfies the radiation condition,
Now consider the special case of an isotropic medium in which both the
permittivity and permeability are scalar functions of s only and of the form of

the ratio of two polynomials. Then the causality condition implies,
> l
Re[jkn(S)]=Re[$(/.L(s)€(s)) ]z CRes, ISI>R,, Re s>0, 2,126

But, for both the permittivity and permeability, the positive real conditicn
requires that the degree of the numerator minus the degree of the denominatcr
polynomials is either, 0, -1, or -2, Therefore, for both the positive real
condition and causality to be satisfied, the degree of the numerator equals the

degree of the denominator for both ji(s) and €(s).

2.11 Example of a Bandpass Waveguide

Finally, let us give an example of a medium that, if realized, can ke
advantagenously used to produce a bandpass waveguide. Consider a lossicss

medium whose permittivity and permeability are,

2 2
W2-w - - s
W) s S F T 2.127)
we w

Then s €(s) satisfies the positive real condition if and only if wy is less

than or equal to mz, But

. I72 ly -l -
Aim (e els) = e k)22 ¢ (2128
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implies that K > 60‘ Suppose K - 607 It is obvious that the permeability
satisfies the necessary conditions Now the medium inherently has a stop band
between Wy and W, Fili a uniform waveguide with this medium, For a uniform

waveguide the propagation constant ?“is

{
2 2
W € (W) (2.129)

Y: [c'zw

9

where wg“ is the guide cutoff for a particular mode when the waveguide is

filled with a vacuum, Then propagation exists for Y imaginary, or for frequen-

cies w such that
wa/.L e(w)—?zw?‘ >0 (2,130)
o gc N o

2 2 ¢ N
or (J(UJ2~OJ Mcul-tu ’“‘Uj;c > (O . Figure 2.1 gives the regions of propagation,

And the cutoff frequencies for the waveguide modes are

|
2 2 2 2 \2 112
(Wi+we) +((w2+wgc) 2 2)3]2

> + 2 - Wqc W, (2,131)

et

Also observe that - @, and + o are cluster points for the cutoff frequencies,

1

N
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w? € (w)
€
2
-——tt %ty —-— - ————f —w
9¢;
T - T T T T T T T T YWige
2
T T T — 1 A1 T Wgc,
Wy . w2
We, wc, We, We,
We, We, We, we,

Figure 2,1, Cutoff frequencies and regions of propagation
for modes in a uniform bandpass waveguide,
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3. GENERAL FORMULATION OF THE SPECTRUM OF CHARACTERISTIC WAVES

3.1 Field of an Arbitrary Source in a General Anisotropic (E,E) Lossless

Medium as a Spectrum of Characteristic Waves

Let us consider the problem in which the medium in Fourier transform space
is described by matrix permittivity, E(K,w), and permeability, g(ﬁ,w), even
though no known natural media has such a constitutive relationship, Also assume
that the elements of the matrices are arbitrary functions of w and Eo With this
formulation Maxwell's equations display a great deal of symmetry, And the
symmetry is capable of revealing much as far as the form of the expected results
are concerned.

The Fourier transformed Maxwell's equations are

~RAER e~ wWp NH R wi - I (K, W)

3.1)
—jkaHiK Wi wEy KElk, w)+ T (k, W)
where « - & AvT .+ and - ﬁrfq[:. i . Elimipating E in Equation (3.1)
gives the equation for H,
T TER SRR TR N TNT 3 VN TSROV (3.2)
where
- . T Rl Ing
M (k cot= T 0k ,!J;,-'\‘/,l(,uéo)"-quK Je (k,w)} (3.3)
Then Equation (3,2) may be rewritten as,
Gy (K, wirik,w) = -jwe M_(k,w) (3.4)
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in terms of the matrix operator, GH(E,m),

Gk, w) = (-kxK' kx-k3N) (3.5)

The source-free solutions may be found from Equations (3.4) and (3.5) with
the source term equal to zero, Alternately, one can find the eigenvalues and

10
eigenvectors that correspond to the problem

~KxK'KxH, =X\ NH,  (iz1,2,3) . 3.6)

. 2 .
and then equate the eigenvalue Xi to ko. This means that the source-free equa-
tions will be satisfied for the propagation vector, ﬁ; on certain surfaces in

Fourier space, These surfaces are prescribed by the equation det [GH(E,w)] =0

In terms of the eigenvalues of Equation (3.6) the det [G,(K,w)] is

2 2 2
(det N)(xl-ko)(xz—ko)(xa—ko) or (det N)slszsa.

(\.-k
1

i) = Si = 0 is a portion of the dispersion surface, For a cold plasma
(N=1I,KGE¥ K(ﬁ)), Si = 0 is one sheet of the dispersion surface; however, for
a warm plasma, (N = I, K = K(E)), Si = 0 (i = 1,2) may be more than one sheet,
Assuming that the medium is lossless, i,e,, K = K*; N = Nﬁ; there exist
certain orthogonality relationships between the eigenvectors Hi' First, lowever,
it is necessary to show that the eigenvalues Xi are real, Define A as

- —l—b

A=-kxK kx,

Lemma 3.1: The eigenvalues of the matrix equation AH, = xiNHi (i =1,2,3) are

real,
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Proof: AH; = X NH;
FfAH = A HITNK
Hy ATH, = N HINT R,
HEAH = XHTVH,

(‘A and N are Hermitian fo} real ® ond W)

Eut HEAH: = N HTNH,
Therefore, (N; MIHINH, =0
Hence, AEEPYERY

or 2) H?NH-=O

Theorem 3,1: The eigenvectors of the matrix equation AHi = )\iNHi (i= 1,2,3)

satisfy the orthogonality condition H;'NHi = 0 for Xi¥ xj'

Proof : AH1=XINH]
HTAH = X HINH,
HjTAHi = )\‘ HjTN H;
(- A,N are Hermitian and Xj is real)
But HjTAH; s )\;ijN H;
Therefore, (X =X 3H]TN?4;: O
Hence, HINH; 20 for ;) # )

. - -1
We observe that for lossless media, since the operator Xk xK l; x N is the

1

= | —» -1-»
adjoint of -N "k x K "kx, then the set of eigenvectors, Bi’ are the reciprocal

11
basis to the set of eigenvectors, H
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One of the eigenvalues, say X3’ is zero. This fact immediately follows

from the relationship
det (-N"KxK"&kx)= X Aphg (3.7

since the determinant of a product is equal to the product of the determinants

of two matrices and since det (Ex) = 0, The eigenvector, H corresponding to

3’

the eigenvalue k3 = 0 then may be chosen as H, = E, From this it is evident

3

that H_, is longitudinal and that E

3 corresponding to H

3

is zero,
3

Choose the components of the eigenvectors, Ki and Bi to be polynomials in
the transform variables g, ny Ly, w with no common factors, This is always pos-
sible when the elements of K and N are the ratios of rational polynomials of
the wavevector k and w. Then the identity matrix, I, in terms of the eigen-
vectors is

3
S (HENH; TINH; HE (3.8)

H
"

H
|

3
Y (HENH; THHEN (3.9)

il

The operator of Equation (3.8) operating on a vector splits the vector into its

components that are parallel to Bi‘ Similarly, the operator of Equation (3.9)

splits the vector into its components parallel to Hi' Equation (3,8) will be

used in the interpretation of the field due to an arbitrary source,
-1 - .
Both GH(E,w) and its inverse GH (k,w) can be expressed in terms of the

eigenvalues and eigenvectors of Equation (3.6),
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—_ 3 -|
Gy (K, w) =) sy (HT NH T e, HT (3.10)
=i
| > -
Gk, w) =) ST (HT NH; T H, KT (3.11)

To verify that the expression for the inverse of GH(k,m) given in Equation

(3.11) is correct, multiply GH(E,w)Gél(E,w) on the right by the vector NHJ'
Then
[ 2 Lo+ I
- - - - t
GGy NHj = Gy S (HT NH, ) Hi HINH,
1=

= S] GfiH]

=S-j'Sj NHJ' (* GH Hj =S; NHJ' )

NFH

Since any vector may be represented in terms of the three eigenvectors,
Hi(i = 1,2,3), Equation (3,11) is true in general, The solution for the
magnetic intensity, H(;,w), for the arbitrary source is obtained by the

inverse Fourier transform of H(E,w) deduced from Equations (3,4) and (3,11).

3 .
- - - - - -1k-
H(T,w) = - jwe, (277 ff 2. STHINH KT M (R wte ¥ Tk (s.12)

Multiplying Equation (3,12) by p inside the integral sign gives the expression

for the magnetic flux density, B(;,w).

ST -

0 0]
3
B(T,w) = —jwﬂoeo(zv)ﬁﬂ STHINK, TINH RV (R w)e!™ 6k 3.13)
.:,
-
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Recall that Equation (3.8) operating on a vector, Mm(k,m), splits the vector
into its components that are parallel to the magnetic flux density, Bi’ that

3
corresponds to the eigenvector, H .. Therefore, M (k,w) = Z Mmi (k, W)
i=1

where Mmi (K, @) = (H] NH; T NH; H M (R, W)
- 3 -
Similarly B(k,w)= Z Bi(k,w)
i=l
where B; (k,w) = (HINH,'NH, HT B(K,w)

Using these facts result in
(00
- -3 2 - -jkr 3
B(r,w)=-jwpoeo(27r) ff zSiMmi(k,w)e d k (3.14)
izl
-

, the

t -
Eecause of the orthogonality condition, Hj NH; =0 (H}Bi =0) X\ ¢Xj
component of B(E,w) parallel to Bi is entirely due to the component of Mm(E,w)

parallel to Bi’ i.e,,

- . - -
Bi (k,W)=-jwpu,€,S; Myilk,w) (3.15)
Denote the inverse Fourier transform of S;:l and (HI Nl-li)_1 by Qi and Gi’ res-
pectively, Then
Bi(r, W) =-jWu,€,Q; * M_.(7,w) (3.16)

and

3 .
B(r,w)= -jw #oeoz Q; * My (v, w) (3.17)
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Mmi(;,w), the inverse transform of Mmi(i,w) is

Mmil 7, W) = ug Gy * 8] (iV,wis * HIGV,w)d * M_(F,w) (3.18)

#',fGi * B (jV w) TGV, w) Mo (7, w) (3.19)

The prime symbol is used to emphasize that the quantities are eigenvectors,
not components of source fields, The reason for the choice of the normaliza-
tion for Hi and Bi now becomes apparent in that the inverse transform of Hi(i,w)
and B;(E,w) are H{(jt@w) and B;(jvgw), respectively, Also, because of the
isomorphism between polynomials in Fourier space and partial differential opera-
tors operating on the Dirac delta function &, an orthogonality condition equiva-
t - ;é . . .
lent to HleFh =0, X X] , exists in x,y,z space, i.e

.9

HTGV, w18 % B ((V,w)s =0 for \# ), (3.20)

or
TGV, w1B] (Vw8 = 0 (3.21)

If in Equation (3.1) H was eliminated instead of E, analogous results would
occur, However, invoking duality produces the same results in a more enlighten-
ing manner, Duality implies that one can replace the quantity (I) by the quan-

tity (II) in the previous formulation to give the desired results.




41

(1) ' (11)

]
=]

-J (3.22)

o B3
o o

wzom‘r:c..c;.-mm
m

Using duality, with the dual operator‘§9 , Equations (3,2) through (3.5) result

in,

— - — -
(—KxN  kx-KoKIER, W) = = jwpoMelk W) (3.23)

-

Mg (k,w) =~ D [Mm(i,w)] = T (k, W)+ 1/ jwpd (=K IN' T, (K W) (3.20)
Ge(k,WIE(k,w) = -jwu M, (K,w) (3.25)

Gelk,w) =D [GH(F,LU)] = -kKxN'kx- KoK (3 26)

Since the operators det and b commute, det [GE(i;w)] is easily seen to be

(det K) [ﬂ (A -kﬁ)] [ﬁ(xz-ug)][.ﬁ(xs—uﬁ)]
x3 = 0y therefore,19[53]= 53 . At this point, we will prove some relation-

ships between the eigenvalues and eigenvectors, that are necessary in order to

continue the discussion of the electric field using the duality principle,
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Lemma 3.2: The dual of eigenvalue \; iS \j ,i, j=1.2,i%j,if
f)[xi];éxi_ ﬁ[xi]=)«j.i¢j;i,j¢ 3‘B[x;]#x;

Proof: Assume that an eigenvalue, A, and its eigenvector, Hi’ satisfy the

i)

equation

GH(:,w.xi)Hp 0] (3.27)

The dual of Equation (3.27) is

B7) [GH(;,w,x )H‘]=GE i.w,ﬁ[x;] .B[HI]=0(3.28)

' -
Therefore,,@ [);i] is an eigenvalue of GE(k,w,)\)E = 0 with © [Hi] as its coger-

vector. Since

(det N)det [GE(;,w,x )] =(det K) det [GH(I,w,)\)] =0 (3.29)

-
19 [xi] is also an eigenvalue of GH(k,w,X)H = 0. N°WJ9 [Xi] # 0 since it is

j=1,2. But

; since

2

assumed that Xi # 0. Therefore, either ) [hi] = Xj’
.@[xi] R 2[xi] =X 1,5 =1,2, 1 #J. Note that if HIN] =), tfor
either i equal to one or two, then the other nonzero eigenvalue must also be
equal to its dual.

The duality relationships among the eigenvalues and eigenvectors are
summerized in Figure 3.1l.

Now with the aid of Lemma 3.2, we are able to discuss the implication of
duality upon the dispersion surfaces. First let us note that the dispersion

surface for the electric field is not necessarily equal to the dispersion sur-

face for the magnetic field. By this is meant that the zeros of det GE are not
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(k, w\)—H, < ME——E G (kw,\)—A
| e | | K, |
[ [
o a/
o 9
| ) |
Ag—0G,{Kwi\) —= Ho—ME—"E,~——G kw\)—),
Ay= 0— G fK,wA)—Hy=k ME. E,=0  Magnetostatic
Electrostatic ~ H,= O MLE. Ey=k ——GgkwA)—A4=0

Figure 3,1, Duality relatlonshlp among the elgenvalues and
eigenvectors of GE(k,w,L) and GH(k,w N

(GE(kw)\)—-klekx MK; Gy (k,w,\) =
-k x k1 kx—)\ND_dual M.E. = Maxwell's
Equations),
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necessarily equal to the zeros of det GH' A warm plasma is an appropriate
example, Hence the phrase, "the dispersion surface of an electromagnetic field,"
is not precise, For the dispersion surfaces to be equal would imply that the
zeros of det g equal the zeros of det g In truth, the relation between the two

dispersion surfaces is duality, Lemma 3.2 can be used to explain a finer struc-

ture among certain sheet(s) of either dispersion surface, Consider the disper-
3

sion surface for the electric field, i,e,, det GE = (det K)'II1 S, = 0, The sheet(s)

i=1 1
defined by S3 = 0 is equal to the .dual of itself, If the sheet (s) Si =0

b

0

(i= 1,2) is not equal to the dual of itself, then the dual of sheet(s) Si
is equal to the sheet (s) Sj =0, (i # J, J = 1,2). This characteristic is exem-
plified by the general time-dispersive uniaxial problem of Section 4, Similar
results apply to the dispersion surface for the magnetic field, det GH = 0,
After this discussion of the .implications of duality upon the dispersion
surfaces, eigenvalues and eigenvectors, the procedure to obtain the electric
field from the first part of this section by duality should be self-evident,

From the previous formulation, the field J?=li&, 7#] could be found in

three ways: (1) by the equation GH(E;m)H(E;w) = - jweo Mm(ﬁ;w) and Amperes law,

(2) by the equation GE(EZw)E(E:w) = - jwpo Me(§;w) and Faraday's law, and (3) by
the equations GH(EZQ)H(EZQ) = = Jw€ Mm(f;w) and GE(E;w)Efﬁzw) = - Jupu Me(ﬁ;w).

Only the last method is symmetric in the field components, All three methods
depend on either GH or GE‘ That .is, in all three methods, Maxwell's equations,
with an assumed form of constitutive relations (D = SE, B = gH), were reduced
to an equation envolving only one field component , E(ﬁ;w) or H(E,w). However,

this relatively simple reduction may not always be possible, If the flux

quantities, D and B, are linearly related to both the field intensities, E and

.
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H, then the simple reduction is not possible, An example of such a coupled
constitutive relation occurs for the fields in a moving medium, In general,
the linear constitutive relationship may be written as

F, = gF where F

¢ = [D,B] and F‘= [E,H].

b i

Thus, it seems desirable to formulate a method to find the field due to a source

in terms of the characteristic fields in a symmetric manner that envolves both

E and H, and that circumvents the difficulties that arose in the previous formu-

lation,

3.2 Definitions of Symbols

Let us define some symbols of quantities (vectors, matrices, functiomns) in

the Fourier transform domain,

E
F = (six-vector of the electromagnetic field elements) (3,30)
H
Je
C = (six-vector of the electromagnetic source elements) (3.31)
J
m
_*
O -jkx
=| =
0=®x o (3.32)
U (sixth-order constitutive matrix) (3.33)
m (®,w) = 0 - juwU (3.34)




46
D
Ff = = UF (six-vector of the electromagnetic flux elements) (3 35)
B
I (sixth-order identity matrix) (3 36)
Fi,vi (the eigenvectors and eigenvalues corresponding
' (3 37,
to the matrix equation OFi = v HFi)
Ffi:g‘:l (3 38,
f cticc
I; = (FUF) URF (3 39
.t et e oh o 4
- = )= ! . I o 10
;= (L= (FTURTF FIL )
f .
Vo. = 1.V (V an arbitrary vector; V_. component of V
fi i . fi? (3 i
. 1
'parallel to F}Q
Vi = IiV (V an arbitrary vector; Vi, component of V
(3 4z

parallel to Fi)

3.3 Characteristic Waves

By definition, characteristic waves are the fields which are describe«d ..

the eigenvector, Fi’ and its associated eigenvalue, Vis that are the solut: .-
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the equation
QF} = I/i g_F. (3.43)

Since O and U are sixth-order matrices, there will be six characteristic waves,
i.e., the index i will run from one to six, When the eigenvalue, Vis is equal
to jw, then the eigenvector, Fi’ will be a source-free solution to Maxwell's
equations, However, the field, Fi’ corresponding to v = vy may not encompass
all of the solutions to the characteristic equation, Field vectors for the

characteristic equation exist, if and only if

'det‘%)—* 4=0 (3.44)

But

6 .
det[o—ug] = {detY) Iy~ ) (3.45)

Hence, other solutions will exist when det E = 0, It is not necessary that
the determinant of 2 equal zero identically, 1In gengral, g will be a function
of the transform variables w and E: Also, E will be dependent upon other
parameters, Thus for certain w,-E>and other parameters of g, the condition
det g = 0 may be satisfied,

At this point it should be emphasized that the eigenvalue problem that
concerns us is in distinct contrast to the usual eigenvalue problem, The usual
eigenvalue problem deals with the question: Given a medium, normally isotropic
and homogeneous, contained in certain boundaries with "walls" that may in gen-
eral be described by an impedance, what are the source-free solutions or modes

that may exist? These eigenvalue problems encompass both the bound case

(cavities) and the unbounded case (waveguides)., They are in the time-space
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domain, The modes then are a superposition of the source~free waves that may
exist 1in the unbounded medium in such a way that the boundary conditions are
satisfied For exarple, in a vacuum filled perfectly conducting rectangular
waveguide, four appropriately chosen plane waves comprise a mode, In a per-
fectly conducting circular waveguide, an infinitely nondenumerable number of
appropriately chosen plane wave conprise a mode, The eigenvalues in this type
of problem are largely determined tky the boundaries. 1In our problem, however,
the mediur is of infinite extent., Also the domain of consideration is the
Fourier domrain in contrast to the real space-time domain, The eigenvalues and
eigenveztcrs are entireiy a fun:tion of the matrix operators O and £° The
operator 0 is a result of the fcrn of Maxwell's equation only and is indepen-
dent of the mediur, 7The opersator 9, however, is the constitutive relationship
and hence comprises the entire electromagnetic description of the medium,
Thus, it can be said that cigenvdalues and eigenvectors are a function of the
mediun. only, In fact, the constitutive relationship g can be completely ex-

pressed in terms of the eigenvalues and eigenvectors,

Proof:
U= ‘/;-,’w)[’nz__—ﬂz] (3.46

where

WZ=1"+;wU (3.47)
S rtur ue
U= 2AFTuF ) Uk Fly (3. 48)
1= - B
6
- -l
1= 2 VIFTGR) P (3.49)

) b ]
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Since for i = 3 and 6 both vy and OFi are zero, the limit must be taken for
these terms, It must be emphasized, however, that knowledge of vy and Fi at
one freguency is not sufficient; vy and Fi must be known as functions of k.
and w. Equivalently, a knowledge of the characteristic waves ét every point
on the dispersion surface in four-space (ﬁ;w) completely determines the
electrdmagnetic properties of the medium,

Certain properties of the eigenvalues and eigenvectors may be determined
by onlyvknowing the symmetry properties of the operators 0 and 2. It is easily
shown'that the operator O is skew-Hermitian for real ;; i,e., 0 = - d+ . Assume
that the medium is lossless, This is equivalent to saying that the operator E
+

= . With these two facts it is easily shown that vy

is Hermitian, i,e,,

nha

is imaginary, This follows from the fact that (FI OFi) is imaginary, (FI gFi)
is real and that v, = (F: OFi)(FI'gFi)_l. Also, there exists an orthogonality
property among the eigenvectors, The conjugate transpose of the equation

fi OFj = vj Fi HFJ is the equation FI OFi = ijTUF . Use has been made of

= i
the symmetry of O and U, and that vj is imaginary. But we independently know

tor -y 5t ot
that 3 OFi = viFngi. Hence, (vi vj)Fngi. Therefore, for vy # Vis

tF - 0 or FIF o
Fngi = 0 or Fiji = 0,

To better understand these characteristic fields for an arbitrary Hermitian
constitutive relationship, it may be profitable to digress for the moment to
correlate the characteristic fields from the six-vector and previously considered

three-vector methods, Naturally such a correlation implies that the constitu-
€ O

tive relationship is "diagonal,” i,e.,

o
]

since only then is the simple
0 u

decomposition into three-vectors possible,



3,4 Relationship Between 777(v), Gg(\), and Gg(\)

It has already been established that

Gg(\) = 'K"on}_i_—l-‘:x —Xe;'g

_ -»> —l-. —'
GH()‘) = —‘kxéog kx—Xp.oé

and

=

>

|

AN

e

o
i* O

Further define
/ |
Gg (M) =g GE(N)

GLIN) = €5 Ge(\)

Using these definitions it may be shown that

/ 2
. " GE(-F'OGOU ) O
TP - 0  Ghmo€,v’)
Since
-1 0 I O

(3.

(3.

(3.

(3.

(3.

(3.
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50)

51)

52)

53)

54)

.55)

56)




and
Gg O Gg 0|]|1I O
- (3.57)
0 Gy o I 0 Gf
then,
Gt O
det 7{(-v)=det Z[) and det = (det Gg)ldet Gy)
0 Gy
Therefore,
_ - 2
det [— 7[-vIu 'ﬂ((v)] = (det U ')[det 77{(1/)]
(3.58)

’ -2_2 7 -2
= det Gg(-c V ) det Gyl-c v?)

Or
-2 2 -2 2 2
detﬂi(f/) : {[(det p)det Ggl-c "V )} {(de? €)det Gul-c v )]} (3.59)

This expression can be simplified further by using the following lemma,

Lemma 3_3: (det p)def Gé(_c_zz/z) = (det g)det G{.i(’c-zllz)

Proof: Define

GL(-c V2= Ap 'Asc Ve (3.60)

51
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and

G;(~c_ v):REA+CVU € (3.61)

for an arbitrary matrix A

fhen
- _ -2 2 _
ag'e (- -6l cv i) ila (3. 62)
== E i &3
det Adet€derG” = det 67 det 11 det A
et Adet€detG, = det G det /L de (3.63)
Or
-2 2 2,2
det 4L det Gg(-C ") = detg detG(-Cv°) (3. 64)
In particular, if A = - 5;%,
det defG/(—Ezy2): detedet G’ (~C-:7/?) (3.65)
g E- = H 7 -
Now the determinant of Z?(v) can be expressed as
/, =2_2 /, ~2. 2
= - =+ 1 'C
det 772(1/) tdet/édefGE( C vV ')=*Xdet€de GH( V") (3.66)

fhe sign ambiguity occurs since the square root has been taken, However, since
the determinant of Z7(v) is set equal to zero to find the eigenvalues, the sign
cocllicient is of no great importance at this point,

A lew observations concerning the preceding mathematics are in order, par-
titularly about the relationships between the eigenvalues and eigenvector of

the three-vector and six-vector methods, One apparent discrepency is contained
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in the question: Why does the three-vector and six-vector methods result in
three and six eigenvalues and eigenvectors, respectively, particularly in

light of the fact that both methods represent Maxwell's equations for the same
medium and both sets of resulting eigenvalues and eigenvectors are sufficient
to completely represent electromagnetic propagation in the medium? The answer
to the question is found in Equations (3.55) and (3.66), Both Equations (3.55)
and (3.66) indicate the relationship between the eigenvalues of the two methods

-2 2 . . .
i,e., A\ = - ¢ v . This shows that corresponding to each of the three eigen-

?

values )\ there exists two eigenvalues v = = jc(x)1/2: If F = [E,H] is an
eigenvector, i.e,, ﬁ?(v)F = 0, then from Equation (3.55), E and H are eigen-
vectors of GE and GH’ respectively, Conversely, a pair of eigenvectors E and
H, corresponding to the eigenvalue )\ of GE and GH’ is also an eigenvector of
M (v). Moreover, the six eigenvectors F, are not completely unrelated as one
might surmise from the fact that corresponding to every eigenvalue Vis there
exist another one, Ve There is in fact a relationship between eigenvectors
corresponding to v and -y,

Assume that corresponding to the eigenvalue v, F is the characteristic

field, i.e,,

A PR .o

' v
Now we claim that the characteristic field, F, corresponding to the eigenvalue

A
-v is F = [E,-H], i.e.,

v
OF = - y UF (3.68)



54

This is easily seen by distributing the negative sign of -H with the preceeding

I 0

matrix elements and the multiplying on the left by [0 1

] . The result is
Equation (3,67) which was assumed to be valid,

The following table will summarize the relationship between the character-

istic fields of the two methods,

TABLE 1
N, E, H, v, F _[E!7Hl:| -~V F -[E,,—H,]
V r
)\2 E2 H? 1/2 FZ" EE’HZ ‘VZ F21|-E2) HZ}

E}‘ H3=C
Ay=0
- -
E3:o Hs-k 7/3-0 FG: O1H6:k
Three-Vector Characteristic Fields Six-Vector Characteristic Fields

3.5 Completeness of Characteristic Fields

Before any attempt is made to represent a field due to a source distribution
in terms of the characteristic fields; it first must be established whether such
a set of fields can represent the desired field, i.e,, does the characteristic
fields form a basis for the vector space, Let us consider this question in terms
of projections,

, . . . . 2

A projection Ii on a Hilbert space, H, is simply an idempotent (I.l = Ii)

linear transformation of H into itself, The range and null space of Ij are
. j
M, = I, X -XEHJ and N, = I X-= 05X€H , respectively, Thus, the pro-

jections Ii partition the Hilbert range space, From this we see that Ii defined




55

-1 - ;
as (fz gFi) FF: U@l =1,2, ,., 6) are indeed projections as defined above,

Furthermore, they are orthogonal projections Iin =0 (i # j). In our case,

the projection Ii partitions the range space into the space of vectors parallel,
M., and orthogonal, Ni’ to the characteristic vector Fi‘ If an arbitrary vector
F is to be expressed as the sum of characteristic vectors, then it is obvious
that the sum of the ranges of the projections must spﬁn the space, iga Mi = H,

Now the sum of orthogonal projections is a projection., Thus, it is not sur-

prising that the sum of the projections is the identity projection whose range

is the Hilbert space, i.e,, iga Ii = I, Indeed, this is an equivalent statement
as to the completeness of the characteristic vectors Fi'

Analogous reasoning applies to the set of projections [?i ti=1,2, ... 6] .
The main difference is that the set [Ii ti=1,2, ... %] partitions the
Hilbert space into sets of vectors parallel to the characteristic vectors Ffi'

not Fi' Therefore, the latter set would be more profitably used with flux

field vectors, whereas the former should be used with the field intensity vectors,

3.6 Spectral Representation of Fields Due %o a Source

One of the most important purposes of representing the field due to a
source as a spectrum of characteristic waves is to gain physical insight into
the process of propagation in the medium, Most often the source problem is
attacked in the Fourier domain by inverting a complicated coefficient matrix
followed by a Fourier transform inversion, Since all of the sheets of the dis-
persion surface will occur as singularities of the Fourier inversion integral,
the integration process is extremely difficult, Also, the mathematics reveals
little physical insight other than the singularities, i,e,, the dispersion sur-
face which implies the source free solutions, are a prime determining factor in

the source problem,
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A number of questions may be asked concerning the relationships between
ihe sGuirce free problem and the source problem, A very significant question
is: what is the explicit relationship of each sheet of the dispersion surface
and its associated characteristic wave to the source field? Also, in what
manner does the source excite the spectrum of characteristic waves to form
the source tield? These and other questions will be answered in the process
of finding .te spectral representation of fields due to a source,

There 1s ot least two ways of deriving the spectral representation of
the source {ields, The first and perhaps the simplest is to express the
source in terms of tnd assume that the source field may be expressed in terms
of the characieristic fields, This is possible since it has already been
established ihat the characteristic fields are complete and may be used as
a basis, Als>, an important factor is the orthogonality of the eigenvectors,
Actually the source will be expressed in terms of the characteristic flux
fields, ffi’ since the source itself is a flux as can be seen from Maxwell's

equations, That 1s, let

6 6
C =chi:z‘ B; Fe; (3.69)
iz

1= |
Cf, is the o nponent of the source that is parallel to the characteristic flux
i
field FIi‘ “"“hen use the orthogonality condition to determine the coefficients

: t t t -1 _¢
Bi. Theretore, F, C = ﬁi F/ Fg or Bi = (Fi Ffi) F, C. Hence,

6
C :Z(Fi‘thi)—'FfiF?C (3.70)

Similar:y,

6
(k,w) = ZQ;F; (3.71)
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-
Fi(k,w) is the component of the source field that is parallel to the charac-

teristic field Fi'

© 6
M2 a;Fi=2 B Fy (3.72)

i=1 izl
But

%Fi YV —jWIFg (3.73)

and

Ff?f( Fi = (vi-jw FT R 8y (3.79)
where 61j is the Kronecker delta, Therefore,
Q; v~ jw) F P = B F P (3.75)
and
a; = (v;-jw) " B; (3.76)

Equation (3,76) shows an interesting fact, The component of the source field
parallel to the characteristic field Fi is completely and entirely due to the

component of the source that is parallel to the flux field F Moreover, this

fi®
component is only affected by its own sheet of the dispersion surface and not
by the sheets of the other characteristic fields, Now the component of the

-
source field Fi(k,w) parallel to the characteristic field Fi may be expressed

in its spectral form,

Fi (-':,CU) = Vi —jw)—| (Fif Fﬁ)-lFi FifC (3.77)
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The total source field as a spectral representation becomes,

- S hete et (3.78)
Flk,w) =3 (v -jw) (FFi) RFRC :

il
The second method of deriving the spectral representation in contrast to
the first is to directly express the matrix operators ”I and 77?-[ in terms of
the characteristic values and vectors without making any assumptions about the
source or the field, If the first method haé been determined at the outset,
then it would give a motivation for the expression for f)z_l, Let us postulate
the expressions for/?? and 77Z—Iin terms of the characteristic values and fields,

and then show that they are indeed valid, The appropriate expressions for W

and W-‘Iare,
6
/7(](.0) : Q[Z(Vf—iw)li] (3.79)
1=
and
- . =| il -1 f
ﬂz (jw=U [Z(v;-iw)lz] (3.80)

The notations for Ii and Ii have previously been defined, To verify the expres-

sion for 7(](.&)) , it must be shown that
. (]
W(]UJ)V : Q[Z(vi—jw)li]v (3.81)
=l

for an arbitrary vector V, Since, however, the characteristic fields are com-

plete, it is only necessary to show that the equation is satisfied for vector
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V to be any characteristic field. Assume that
. 6
77Z(iCU)Fj=g[z'(Vi -jw)Ii]Fj (3.82)
=Lz
Then
7 Gw) Fy= Uy —jw)F; (*" orthogonality) (3.83)
= (V- jwlyF; ‘ (3.84)

= W) Fy+ (yy-jargr; (7 7 wp)F, - 0) (.85

=77 GwiF, (v 77/(vj)=o-ujg) ~ (3.86)

Hence, the expression for W(jw)is verified. Perhaps the simplest way of veri-

fying the expression for??Z-l(jw)is to directly show that W(jw)?/"(jw) =1,ie.,
-1t e t_f
W(jw)g [Z(V;‘iw) Ii] = 1 (3.87)
- i=1
Now

6 6
n (jw){g"[ > (y-jw)! 1',]} =y —jw) MG 'L (.88
' - izl izl -

6
=2 (v-jwl P hiw 10 (3.89)
i=i (= definition of I; and I})
J -1
-yur;u (2001 -jwiu ) (3.90)
i=1 -
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6 .
=y 1! (3.91)
i=|
= I (3.92)

-1, . c o
Therefore, the expression for Z? (ﬂ;ﬁis also verified,
To derive the spectral representation for the source field F(k,w), it is
only necessary to use the spectral representation of the inverse of the field

operatoz-Z?(j(U)which was given above, Thus

6
- - -1 f
Flk,aw)=u"' Y (v;-jw)'I;¢ (3.93)
: s
6
:g IZ(Vi “‘J(J.)) ICfi (3.94)
= i
or
- 6 __.
Ff(k,w)=z (I/i’j(l)) Cfi (3.95)

=1
Not only is this expression compact, but it is also quite revealing in physical
insight. However, bgfore the physical interpretation is given, let us show
one more fact. Resolve the source flux field Ff(;,w) into its components paral-

lel to the characteristic flux fields.

By definition the component of Ff('k',w) that is parallel to F . is

e f -
Ffj(k,w) - Ij Ff(k,w). Using Equation (3.95), this yields
6

Ffj(k,w) = i?l (vi - jw) I, C
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£
Now because of orthogonality Ij Cﬁ = 5ij Cfi' Therefore,
- N . -1
. j = ., - . 3.96
and \ K
Ff (k, w) = z Fe;i (kW) (3.97)

Again we arrive at the conclusion that the component %f{the source field
«

that is parallel to the characterlstlc flux field, F is solely excited by

£3j’

the component of the source that is parallel to the character1st1c flux field,

F . Now using Equations (3.69) (3 96) and (3.97), a physical interpretation

£5 ' ' . -
to the source field may. be given. Slmply stated, the Fourler transform of the

1

g v oy g «
flux field Ff(k,m) is*tHe .pum of the components of the source parallel to the

%

*
characteristic fields, Cfi’ each divided by 1ts respective sheet(s) factor: of

the dispersion surface, S k6 = (v;‘- jw). This fact is illustrated 1n Flgure 3.2,
i

~

It is also evident that there exist™source distributiens such that certalny
.’3 - N

s R :
sheets of the dispersion surface and their respective charécteristic Tields

play absolutely no part in the total field, namely, those source dlstributlons

which are orthogonal to the said characteristic fie1d§, i.e., C's such that

. W
F C = 0 for some index j.

J
In the real space-time domain, the flux field may be given as

?f(r t) = Z 3‘;,(r R . (3.98)
ERAEAE CiEl Tr
-
where ﬁ??ﬂf,f) =Qi* E?fi and Qi and c?fi are the inverse Fourier trans-
-1 -
forms of Si = (vi - j®) 1 and Cfi’ respectively. The convolution is a four-



Figure 3,2,

Thq‘Fourier transform of the flux field,
Fe(k,w), in terms of the "characteristic
sources' and the sheets of the dispersion
surface,

62
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dimensional space-time convolution., In the space-time domain the source flux
fidld é%:ﬁfl) in terms of the "characteristic sources™ is illustrated in

Figure 3.3. _~=~s
e 3
At fhi?;@ﬁ;nt the matrix Green's function I' is easily determined. By
. ! L T s - —
definition the matrix Green's function I (r,t) is an operator such that

ke . [ S
5. . - %

i L 'w,:‘_ ‘ i
¥

B 3 ; PR

A FlFa1= L1 = B(r,1) (3.99)

Now the "charactéristic' source” is 6ﬁ='%-f* é where- lp-lf is the inverse
. L ) :

. = £ .
Fourier transform of the opérator Ii' Therefore, from Equation (3.98) and

*a

L Lk . L
since the convolutfon operations are associative, the source %lux field is

6 ‘ . \
M ATAY ={Z<°i* ¢, }* 2z . © (3.100)
"y = R
N, '

"
";
"y, . 3 3 o

Thus, the matrix Green's functdiop in terms of‘er characteristic fields and
gs.g - . a* y

A X f - \
the influence of the dispersion surface (the operator q% is easily expressed

)

in terms of the characteristic fields) is o e Yy
> s /AN o e ] )
e an e/, ™ -7 (3.101)
i=1 T | R

3

Alternately, the matrix Green's function could have immediately beeﬁ\ggpg;&ined

-1 f

~ .
from the inverse Fourier transform of &157 (jw) which is equal to L s, 'I..

i=1 1+ 1
- .

It should be?emphasized“thaf‘these results are general and that 'the only
conditions that have been ‘mddé are that the medium be homogeneous, linear and

lossless, i.e., have a Hermitian constitutive relationship.

>



.

ﬁl(?' M
’ﬁi('f, t)
Q* / ’ﬁj (7,1)
o '?i Ry W
Q¥
i
cn
C, Qg*
G,

-
Figure 3,3, The source flux field, Q#f(r,t), in terms of
the "characteristic sources" aad the influence
of the sheets of the dispersion surface,
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3.7 Equilvalence Between Formulations

Again it is instructive to show the equivalence between the six-vector
€ 0
and three-vector methods for the source problem. Let U = - and
‘ - o

= U. The off "diagonals" of U must be zero for otherwisé the Simple de-

K}

coupling between the E and H vectors does not apply.

7)( F=C (3.102)
Multiply both sides by -77ZU" )
But
g -j--
y ’ Je'u—')k"& kxJm Mg
-7 Y C=-jwC =-jw [+ 1= =-jw (3.103)
= m*’ a)"’ kXG kXJ.e Mm
Therefore,
-1 /
-y C=-jwC (3.104)
Fk,w = 77y -jwe (3.105)
d |
77? Z vi-jw) "Iy ' (3.106)
S -l -1
WZ Z Vi-iw) "Iy (3.107)
Therefore,

F(k ,w) = Z Z(V.-jw) (Vp+jw) I u UI (-jwc') (3.108)
izl n={



ter

Now

and

for

The

6 _
= Z (ui2+w2)"1ig"(~jwc’) (orthogonality) (3.
i=l =

[
F(k,w) T -jWupo€ Z I UC N O P |,;°€ ) (3.

Since Xl =2\ N

= \_ and C' is independent of an index, we may sum

4> 72 5

ms, Therefore,

Fi(R, W)+ Fias(K,W) = - jWao€o i —Ka) (Ti+ I;,50U C7 L(i=1,2) G

L= (FruF ) 'FiFfy 3.
tue ) e (et
(FTUF;) = (FhaUF i) .
v
i=1,2 since F, = F,
’ i4+3 i
réfore,
, | EET ©
I;+I,,3=2(FUF;) U 3.
i i+3 i =" 0 Hﬁ*; =
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2 EiEr 0]
- . 2 -1 t+ il ’
And FlR,w) = -2jwpg €0, (X ~kg) (FTUF) tlc
=1 = O HiH
Sjwpg € 2 O-kOT (R TR TR FYC (3.115)
i=3,6 - . ..
For i = 1,2 (FruFp =2(Ef€Ei) = 21T )
For i = 3 Fg= [E3,0} and for i = 6, Fg= [O,Hs]

Using these simplifications, Equation (3.115) reduces to that of the-earlier

method through Gé

. v 3 - p 4:—
E(K,W) = -jWpo€s 2 (h -k (EF€E T'E;EN M,

And

- . 21, -1
HIK, W)= -jWpe€s 2. (Ai-ka) (H w7 HiH M, @1

and Gé. Hence,

i=1,2,6

3.8 Equivalence Between Formulations By Direct Addition of Terms

An alternate and perhaps more illuminating correspondence between the two

formulations may be made by the direct pairwise addition of the terms corres-

ponding to vy and

~V..
1

(3.116)



T Nt - - oY =) :
Folk,wl+ Faslkw) = (v, -jw) 'Ii [=J 'c+(-z/i -jw) 'Iig C (i=1,2) (2.1:3

Lemma 3,5:

Proof:

- - - -V Vv
= (vi-jwT (FTUFT FiFTC - g+ jwltFTurT'FiF e

t,. 5l ol ot . v
=(Fi gFI) l:(Vi_Jw)FiFi _(Vi"'j(.U)F

(3

(3

(3
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Using the two lemmas it can be shown that
t tr L= -l
0 EiHi EiEi (‘ka/._L Jm)
2V, C=2jw - (3.122)
-~}
HET O HiHT (S kxe T, )
t | = -
EEl O ||(-gkxe Tm)
= 2jw + | - - (3.123)
O HiH [{( ;5kx€ T

Placing this in Equation (3,121) and collecting common factors we get

t | -
2iw |EE O (- kx g ' Tm)
Filk W)+ 5(K,w) = (FuR T — 15 Ll{c ,
Wi+w 0 HiH; (a g ¢) (3.124)
(i=1,2)
However, the term in the braces is just C',
Therefore
’ EET 0
Fitk, W)+ Fiya(R,w)= -2jwpge, (=Kol (F TyF™ ant]| S
i
(3.125)
(i=1,2)
Since x3 = 0 and H3 =0
- ) R - t
F3(k,w)"(yl‘1w) (F39F3) F3F3C (3.126)
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- -1
- | Wpo € ha- Ko (FIUF) FaFgC (3.127)

F3(-I:,w)=-jwpoeo(x3-ki)_'(F;l=J_F3)-'F3F;C’ L E5 R (3.128)

Similarly,

F (kW) 7 ~[Who€olre~Ko) (Fg UFg) FFaC (3.129)

- W €olhe-Ko) (FEUFGT 'FeFgC’ 1 He NR) (3.130)

Now adding the terms gives the same equation which was found by the previous

method, i.e.,

1»

g E;Ei O
F (R, = -2iwpo€e 2 kgl (FITUFT ant | ¢
) - "
| o (3.131)
-jWpo€o z (Xi—ki)-l(Fingi)"FiF;fC/
i= 36 =
which reduces to
E(k,w) = -iwﬂ-oeoz (x| _kO) (Elngl) E|ErMe (3.132)
i=1 =

and

HK,W) = -jWeo€o 2. (0 -k (HE wHi) HiHT My (3139
i=1,2,6 -
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4. SPECTRUM OF CHARACTERISTIC WAVES IN A GENERAL

- TIME-DISPERS IVE UNIAXIAL MEDIUM

ry

N "2~ ~
The general tlme dlsper51ve unlaxlal problem is descrlbed by a matrix per-

B N 0O 0 : o K| O O
meablllty and perm1tt1v1ty of the form },L /“Lo O N, 8 " and €= 89 8 |é| (k)
0] () 0] ‘ g 0]

respectively. Maxwell s equations for a lossless medium are

Curl E(M) =-jW NH(P) =Jpm ()

Curl H(T) = jwE, KE (T + Je(T)

- (4.1) .
Eliminating the electric field gives the equation
-1 2 -o_. -.
Curl K Curl H(N)= kg NH(T) == jWE My (T) (4.2)
where
M) = JplT - (———)VXK Je(7) @

0

Taking the Fourier transform with respect to the-space variables. results in,

G KIH(K) =~jw €, My (K) (4.4)

- 2
where k is the wave vector,

ole =2
Gy, (k)'—ka kx-koN (4.5)



Explicitly Gﬁ(i‘) is in terms of the wave vector X = €,n,0)

-

Gu(K) =| ~Lo& 7
L&l
L

72
(W, m®n) 2"-05:7 . L&l
(Lo HLE-KkoN) -LnL (4.6)
b weE 2+L|772—kiNo)J

Tre characteristic waves are obtained by determining the solution to Equation

{4.4) when the source Mm(__k’) is zero, This implies that the determinant of

el s -
L}H(k) is zero for nonzeroc solutions, Denote the determinant of GH(-;) by D(f),

Then,

-, 2 2 2 2 2 we 2 ’ L
DK) ==K (LT, o +L,T,E - kENL T p2-L T, L = k) N (4.7

whare p = (€2+ 1772)‘&'

lenove Sl’ 82, and S3 by

,‘ . 2

S,= (LT, p%+L, T, L =ky)
2

L= (LT o2+ T, 0-k5), s

|
where T=N

Let

- -
Az-kxKkx

S E—kzo (4.8

and det N=|N|

(4.7
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AH = \;NH; (i=1,2,3) (4.10)
or
(A-A;N) H;=0 | (4.11)
We claim that Xi is real and H}'N Hi =0, i#}j
Proof:
HTAH;=X‘HTNHi (4.12)
*
(HE AT = XS (T (4.13)
*
HTAHi; XI HTN Hi since A and N are Hermitian -(4.14)
*
()\;-)\;)H'{Nﬂfo implies A; real if HtNHi;ﬁO (4.15)
H}-A Hi= A H{NHi (4.16)
n - + ‘ "
HilAHj- )\jHiNHj (4.17)
T + ) ‘ .
H]AHj=)\j HjNHi since "i real and A, N Hermitian (4,18)
(\= A )HINH:) = O implies  AINH =0 if A\ (4.19)
im AjIHjNH; P HiNH; =0 it Aj£A] :
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Figure 4,1, One quadrant of the three-space dispersion
surface for a general time dispersive
uniaxial medium,




- *

The eigenvectors are,

- A -
H;j=kxz, H2=N kxkx2

Then

3 - 3 -1
=S HINHY HETN = S (at t
I-Z:'(HiNHi) HHIN -ﬁi(Hi NH;) NH,H]

— 3 =l
G (K=Y S, (HINH;) NH; HIN
=

-l - -~ =l
G:,(k)=g:'si'm}“~ H) HH

HINH=NP?  HE

77
H|HT=(-k.x£)T(-k‘X2) = .-577

e

—f s o NN z 2
HzH:=(N'kxkx2)1iﬁ'kxkx2) = Nlez No§'r)§

o§77€ _No N ‘Eng
077{; N, M177104;

-NNEPL -NNTIPE NP
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(4.20)

(4.21)

(4.22)

(4.23)

R 2 2 2 4+ _ 2 2
2NHp =NoN(N 0"+ N LOIP", HINH =(N, o+ N L) (a.24)

- (4,.25)

(4.26)



Figure 4,2, Eigenvectors for a general time dispersive uniaxial
medium,
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& &n &
&n m* nt

& 7t

77

(4.27)

9 .
By considering the known inverse transforms of p and k uand the proper

change of variables, one can determine the function Gi’ i,e,, the inverse

transform of (ﬁ? N Hi)_

G,(M) = -5

27N,

(log P) 8(z)

- _ 2
G,(T) = N N2 GG,

- L
r)=T|T2

G d

where

!
P=(x2+y2)/2

Similarly, by considering the known inverse transform of (k

4t (T PiT, ) 2

The functions, Gi’ that result are,

(4.28)

(4,29)

(4. 30)

(4.31)

-1
and the

proper change of variables, one can determine the function Qi’ i,e,, the

inverse transform of S.
i

2 31

KoK, N,

ik (KNP 4+K N 2°
el o (N2

Q-
4T

2 )
(KN, P2+ K N, z°) 2

The functions Qi’ so determined are,

(4. 32)
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I
3,2 “'2 jk (K.N P2+ N 2)’2
Ky NoN; g ko' NoP TK Nz
Qz= > 2 15 (4,.33)
am (KiNo P + KiNz )
_2 -

Q3= -kg 8(r) (4.34)

With the above functions it is possible to give an expression for the
Green's matrix, I', and the magnetic field,

3
- . -»>

C(rw)=-jwe, ) Q; *6; *H; (VIH(V18(F) (4.35)
- i=l
H(r,w) =T (r,w)* M, (T) (4.36)
4,1 Field of an Electric Dipole with a Longitudinal Orientation

The Fourier transform of source Mm(;s for the electric dipole

¥) = 6() 2, is M_(K) L K x z. Th M () is orth
Je(r = r) z, is m( = Tiza—zgj X z, e source M_ is ortho-
gonal to both eigenvectors H2 and H3. Therefore,
My (K) = M (k) (4.37)
and
Blr)=-jwu,€,Q,(r) * M (r) (4.38)
- . - - - A
B(r)=-jwu,€ r)*(.——) X8(r)z (4.39)
J f‘o o(3| ( 10)60’(0 Y7 8( )
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- - A
Blr)=Lgop,VXQ(r)z (4.40)
or
3y ) 2 2 ”2
. po~/K N2 oIKOlKQN P 4K N2 1 2
B(r)= - Vx 5 =T z (4.41)
4 (KON|p+K|N|Z )2
Because B(;B is transverse to the magnetic field and the particular form of
Lhe permeability matrix, the magnetic field intensity is,
- e .
H(T) = = VxQ,(r)z (4.42)
KoN;
It then follows that,
- | —- - A
D(r,w) = -j-aVXH(r)-S(r)z (4.43)

Notice that only one characteristic field, and accordingly one sheet of the

dispersion surface, is involved in the source field,

4,2 Field of an Electric Dipole With a Transverse Orientation

The electric dipole is directed along the y axis in order to be able to

- 1 -1 - A
check Clemmow's1 results, The source 1is Mm(r) = - (azzr-) vxKk 6(r) y.

w€ K

- 1 - A
In the transform domain this becomes Mm(k) = + ( ) k x vy.
ol

- -1 —2-— A > A % | - A
M k)= (——)k (4.44)
mitk) =N, P “kxz(kx2z) WeGK, Xy



I
WELK Ny P T Rxz (K
3 kxz[(ka)*(?xw]

- |
=2 N-I -2
NP, €.0)

|
N"l -2 >
] P ’T)gkxg

WELK,
Mml(?)= -jw' 62
€K z
Mot (T oKi 0y0z Vxi6, (1) = 5,
5 ( | | 03 JWELK, Vx az -
_lw€°Kl> . 2G| dyOz G|(r)2
My (T e
mly(l’)= ( l as z
jweoxl) 0 aGI
) x0y0
Mm2 (K) = Ny N, (N,P?
1 (N, P ]
| "’Noca) 'P—ZN_I-. It
kxkx%[(N"m 5 *(
xZ) l [
W €K )k"
o™

e —1
( K, )P-sz—lfx-l:x'z\

we,
Mma(?)=(% -
J €°K')N Vxng aGI
Mm2x(?)=( | ax
o) 35
M ) t/ 3x%0z 5
mzy(r)=( ' ’
. ‘jw€oK|) 0 ?3 G
) X
Mm2z(7)=( I yaz I
Tjwe g 2
Rl il

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

45)

46)

47)

48)

49)

50)

51)

.52)

53)

54)

55)

56)

57)
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--.I.T
’ d¢ d d
Q, * G, =(2m) fff $dm dt (4,58)
Np (LoTP +L Tlc -ko)
. ® 27 © —j[PP cos (¢ Pr+Lz ]Pde¢d§ |
=(27) fff (4.59)
00-® Np [LOT,p2+L,T,g-2-k§]
.; ‘
=(2m) NI ff Jo(PPle " dPdl (4.60)

[ LoT, P2+ LTy L -ko]

TypPre 1 VKNI Z
(2712 (KT 2 ff PPe :

- (4.61)
[ +LoT, pz—kf,]
1 @ _ / 2_,2 /__
(K|T|)Iz f \To(PP)e LOTlP ko | KlNl ZI dp
- (4.62)
0 P,. / LOTIP -ko
i ARTI AN
aQ,-*G| '(K|T|)I2 y f J,(PP)e LoTl ! K'NI Zl dP
- I . (4.63)
) amr P
y 0 LoT % -k5
0%Q,*6, K ; /CorPE k2 | /KW, 2|
1 %0y 1y -/ LATiP% -k K,N, z
= = (sgn. 2) f J(PP)e ot 0 121 4P (4.64)
9z 0y am P 9 4

Integrate by parts

uze VvV LoTP2-k5 "\/ Ky Ny Zl
-lV/KiN 2| e VSR NCUE |LOTIPdP
u =

2

d



dV=J'|(PP)dP v:—P—.

®

2
0Q*6 Ky o { ~Jo(£P)e-JLor,p2 2 | /KN, 2|

9z dy T 4mT P

(4.65)

o ST
"I K|N|Z|LOT| JO(PP)e ol °
L PP

. / 2

K, y { e'j“ovillel —|,./K,N,z|
AT P (sgn. z) 5 B
© _ 12 2
A POV N VAR
. PdpP (4.66)
)
0 PI"-kg

The integral of Equation (4,66) is Summerfeld's formula (page 34, Functions

12
of Mathematical Physics, Magnus and Oberheitinger™ ),

620‘*G| _ K| y e-lkol \ 4 KlNl ZI
320y = 4.’T—P—(sqn. 2) B

-l'\/erz| e-jko/\/KoNIP2+K|N|Zz
P

(4,67)
2
,\/KoN'P + K'lez

- z
(‘\/KoN| P and /K N, z real, TW < arg, /P —kg < _%T_)

»




A

Now

azo,*c,>
B (f)‘ —VXZ (a—za-y—'

3k4r
d¢ d d

Q,* G, =(2m) fff $d7 4t

N|p (LITOP +L|T|§ "k )

L4

e_j[PP cos (¢l'¢_) +Cz] deddpldg '

© 27
=(21r)'3fff

0 0-® N, PZ[LcToPZ*LtTlgz'kg]

™ ©

=(2m) 2N’ ff

0-® P[LITI N ie ‘k%]

T PPre 8% gpqt

-2m)” (KTlaff Totepre 1Y 2 gpay
||

[ +L,Topz-kf,]

(l'(|-r|)'l2 _/‘P J'o(l"F’)e_ \/L'Topz-k% lJK'N' zl dpP

41T 2

Ox 4T

| © . Z_, 2
00,%6, -(K,T,)" xf T, (PP)e VLToP kol‘\/Klleldp
3
0

A/ LITOPZ ‘kg

®

2
0°Q%G, K, ( )
az a‘ 47r F Sgn. ¥4

o

f Jl(Pp)e—ﬁ,ToPZ—kg|JK,N,z|dp

(4

(4.

(4.

4.

(4.

.68)

.69)

70)

71)

.72)

73)

74)

.75)
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Integrate by parts,

U = e-«/L;ToPZ'kg |‘\/KINI Z|

_Imz Ie"\ﬁl"-op2 'k% |*/R|Nl z | L, ToPdP
du =

2 2
LiToP -Ko
-Jo(PP)
dv:Jl(Pp)dP v = P
, ©
0°Q,*G, _ K & (sqn. 2) { °J'0(Pp)e— L, ToP? -k% I\/Kllel
0z Ox am P P 0
® -/C10P? k3 |/, 2|
_| /KlNIZILITo f J’Q(Pp)e ! Pdp} (4.76)
P 2
o L TP -k
Ki x e_jko| ki, ] /i 2|
= 277 7 (son 2) P P
/12 2 /
® / )— P "ko I K|N|Z|
f \TO(P A/ K|NoP e p'dpl} 4.77)
12 2
(o] P -ko

The integral of Equation (4.77) is Sommerfeld's formula (page 34, Functions of

12
Mathematical Physics, Magnus and Oberheitinger ~),
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6202*51 o Kyox
dz0x AT P

(sgn. z)

e-}kol V KINl ZI
P

2 2
-jk KiNoP KN
Wil oo/ |
F’ |

%,NOPZ s KN, 22
- 2. 2
(«/K,NOP and +/K;N, z reoi, -—;—L <arg./P -kg < —72L)

2
ko 3 Fams )
B )= — .79)
25l K, ax< dzdx / (4.79
2
- Fo 9 [ 970G,
Pyt 3, ( 3z O ) @50
. H -
Bzz(r)=m§35@; Qp(T) (4.81)

. [ -jkoR
B|(7)=:—%(sgn. 2) Vx ;ys {e”koI i zl'l'\/K;Nu le%'—} (4.82)

where

|,2
R, = (KgN, P2+K N, z°) (4.83)



[~ o ik
By (1) = (sgn z)aay( ){ -JKOI N ZI I.\/K N, z| *of l} (4.84)

v/ -Jko
(sgn z){ —y ['Jkol KN z| Im Z| l]

R RS

ikoKoN Y KoNyy \ -,
I'\/K NIZI(—YE) < ° 02 : + e JkoR'} (4.85)

-j . 2 _
B, ( ) l"’o m— _Z_ _(xz_yz) e ]kORI . JkoKOle (l- J )e jkoR| }
X\ 1= 2o 1N P2 P2 R, R, koR, R,

2 2 _
+§%(sgn‘ z)-———(x -Z ) e'l"Ol‘V KiN) Zl . 86)
=]
/ -jkoR)
B.,(r)- s - (sgn. z)-éa;-(-——-){-JkOI Ny z| |«/K N, z| € } (4.87)
.“-oy

(Sgn Z){ZX 'JKQI\/K|N| zl |/}(_M zI e'J oR )

I«/K.N.zl (ikoKole KoNj x > -ikoRl}
- + e

P’ R R}

) KoX¥YZ A/K, N| {[i jkoKoN, (I j )]e‘i“o‘ﬁ}
> -

AT koRy R
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. 2#0")!(59:- z) e—jkolq/K|N| zl (4.89)
4P
By{t)=0 (4.90)
/ -jkaR
s — -1/ KN _— (4.91)
Bzx(’) aT ax (pz) e I 1Ny Z| Rz
where
Rz’ (K'No PZ*KIN'ZZ) (4.92)
L, 2 2 ' -jkaR
-~ _Fo =(x-y ) -jk lo\/KN z| e o"2
Boy(r) = —— (sgn. z){—[e o A /KNy Z
2% 47T g9 P4 I ' I R2
— ikoKiNox  KNox\ -ix.R. 1
"I«/RlNl Zl xz s t20 . — g e %o 2}‘ (4.93)
P R2 Ry
- . 2 . -3
g v, (Ut R (N
o vV P koR2/ R,
(x - ) -jko| /KN
(sgn 2)——— y e’ ol 2 (4.94)
p*
-, Hoxlsgn. 2) § | {_-k I /KN | - e'i"oRz}
B,,(r) = e I*0 N 2oL /KNy 2| ———} (4.95)
2y AT 3y p? VKN 2] R.
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-HoX 2y [ -iko| /KN, 2| “IkoR2
. _ 2y 0 Nz} / €
a7 {sgn. z){p4 (e I KN, Zl R, )
VKN 2] [ koK, N KoNjy \ -
) 21 | 0 |2 oY , Ko 3' e lkORI} (4.96)
HoXxyZ K|N| {[ 2 jkOKINO ( J )e_JkORZ}
= — 4 |-
a7rp? P° Re “oRa”  Ro
_ 2uoxylsgn. z) e_jko|./K|N| zl (4.97)
. .
4mwe
8,.(T) = Lo kil e ol
22 AT 9x  Ra @9
. 3 j
_ -jkopoKi2 No +/N; x (l j g JkoR2
47T koR2> (4.99)

Ry

Because of the form of this particular source, that is, a source that is
orthogonal to the third characteristic magnetic field, H3(E), there will be no
component of the field parallel to the third characteristic field, BS(E).

This will be true of any electric source since then the Fourier transform of
the equivalent source Mm(ﬁaw) will be transverse to the wave vector ;,

-
To arrive at the total magnetic field, B(r), the components parallel to

each characteristic field must be added,
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--> 3 -
B(r)=ZBi(r) (4,100)
i=1
- HoVKIN | -(x3-y®) [ gTikoR1 ikoR2
Bulr) = —2% o2 I "R, Rz
-jkoRy i ~ikoR2
, 2( i Ve : 2 (- ) e 4.101
+jkoKoNyy (I KoR, ) R,Z +jkoKNox (l koRa Rg (4.101)
-~ BoVE N xyz| 5 [ R, iR,
By(f )= 2 A R - R
4P P ! 2
J e‘ikoﬂl J e-.'ikoRz
- jkoKoN (l- ) +jk°K.No(|— - ) (4.102)
OTOTIN T koRy RZ koR2 R3
3 .
- ’jko“oK"z No ‘\/f-‘l-; X J e_JkO RZ
By(r}= T ( —koRz) 5 (4.103)

To the author's knowledge these results for a general uniaxial medium
of the type considered here have never been derived before, As they stand,
they represent the Fourier time transform of a dipole field with a time de-
pendence of a Dirac delta function in a time-dispersive medium; equivalently,
they represent the space-~time solution to a time harmonic source, Several
remarks should be made concerning the above example, First, each component

parallel to the characteristic fields is significantly different from the

total field, Note that the terms with the exp (-jkola\/ K\N; 2z l) dependence are
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not even evident in the total field, Although the interference phenomenon
is well known, it is particularly emphasized in the above, Observe terms
like
-jkgR LY
e o™ e o2
R, Ro

As R1 approaches Rz, the beating phenomena becomes less rapid, Rl may

approach R2 in either one of two ways, Rl may approach R2 along certain
directions in space or the medium may be degenerate, When the medium is
degenerate two of the eigenvalues are equal and the correéponding sheets of
the dispersion surface are the same, For this uniaxial case the medium is
degenerate when Kl/K0 equals Nl/No. Thus, it is immediately apparent that
free space is a degenerate medium and for this reason there is a certain
amount of arbitrariness in the characteristic fields,

For the moment, let N1 = N. = 1 in order that a comparison can be made

2
with the work of Clemmow, P, C. Clemmow published a paper entitled, "The

'in the

Theory of Electromagnetic Waves in a Simple Anisotropic Medium,'
Proceedings of the IEE, Vol, 110, No, 1, January 1963, In this paper, he

gives a method to find the exact fields due to a time-harmonic source in a

nonspace-dispersive uniaxial medium, The above derived expressions for

nz

= ; compare exactly with those of Clemmow, He shows that such a field is
related by a scaling procedure to a corresponding vacuum field, The vacuum
field is expressed as a superposition of a transverse magnetic field, in
which the magnetic vector is everywhere perpendicular to the axis of symmetry
of the anisotropic medium and a coplanar transverse electric field; and dif-

ferent scaling is applied separately to each partial field, Only in passing
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is it mentioned that these scaled transverse fields are two of the three
characteristic fields in the uniaxial medium, Thus, the full signficance of
the characteristic fields is not utilized, Since only two characteristic
fields which cannot span the three-space are used, it seems questionable on
the outset whether the field due to an arbitrary source (both electric and
magnetic) can be described only in terms of these, However, the difficulty,
which Clemmow does not mention, can be indirectly circumvented by using a
superposition of the fields for each type of source, Another difficulty,
the task of resolving the vacuum fields due to an arbitrary source into TM
and TE fields, is not a trivial matter. The whole procedure depends upon
the ability to split the source into components that excitce each type of
lield,

In light of the prececding discussion let us go back to Equation (1, and
observe tle cxplicit role played by the characteristic fields., We wish to
show that by the use of the characteristic fields the source resolution is
automatic and is not simply an artiface for a particular problem., Let us

-
begin by saying that the source field H(k) may be expressed as the weighted
sum of the characteristic fields, Thus, in general, all three characteristic
fields will be involved, although for some source distributions the weighting

factor may be zero, Equation (4.4) now becomes

Mu

Q; GyH; = — jWE,Mp (4.104)

But GHHi = SlN Hi =p;'siBi

. Hence, we have

3 .
Z Q;SiBi= —jWpo€,Mplk) (4.105)
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The weighting factors aj are found by multiplying Equation (4,105) on the
left by H;,

Q :sjwpe €SB HiM () (4.106)
TR %25 T By M ~

At this point the prominant role played by orthogonality is easily seen, Also,
the characteristic field Hj will not contribute to the total field if and only
if H} Mmff) equals zero, This is exactly the case for H3 and an electric
- . -

source current, since H3 equals k and Mm(k) is transverse to k, Since
N=1, H1 =X x Q and H2 =K x K x Q, then Hl(;) and HZ(;) correspond to the
scaled TM and TE fields, respectively, The important factor to be remembered
is that the TM and TE decomposition applies only because the two character-
istic fields are TM and TE, However, the characteristic field decomposition
(spectral decomposition) applies for any medium,

Let us go one step farther to produce another result, As was previously
stated, Equations (4,101), (4.102) and (4,103) may be interpretated as the

. . . >y N

time Fourier transform field of a source J(rJ)-—S(x,y,zjt) y. Now assume

the constitutive relationship is independent of k and w, This assumption

makes the Fourier inversion possible, The results are almost immediate,

VKN, : L
B.(T. 1) = FMN 2 -0~ y?y ( s-cR) Slt——R) )
o ar o2 | p2 R s
(4,107)
2 Sit-+R), KN s(t-LR
y | ol [ ¢ No 71 | =R,
+KoN, R2 (c_S(t—TR|)+ R, )+ py: (—-5—8(1—.2..92)_,. = )}
! 2
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@ HoVKN, xyz [ Bl-2-R) _ 8i=LRy)
Bylr, 1)= a1 Pz P2\ R, Ro )
(4.108)
! I
_KON' 8= Ry K No i i | 8("'C‘Rz)}
-2 (Ls'u-Lrp+ o )+ = (L 8lt-R,)+ o )
|
_/u'OK ol I S(t-?RZ)
B,(F,1) = e Rz (?5("?R2)+T) (4.109)

The support of the fields is two ellipsoids expanding with time in contrast to
the support in free space which is one sphere expanding with time. Thus, an
observer at an arbitrary point in space will be cognizant of two wave fronts
not one, Although these ellipsoidal wave fronts are not of the same shape as
the sheets of the index dispersion surface, they are related, The ellipsoidal
surfaces are of course expanded or contracted ray surfaces, which may be given

in parametric form by

V= VS (4.110)
r -
k-V,S

A problate ellipsoidal index surface will have oblate ellipsoidal wave fronts,
and vice versa, Another point is made aﬁparent by Equations (4,107), (4.108)
and (4.109). No point on the wave front can travel faster than the velocity
of light in a vacuum, Therefore, restrictions are placed on the arguments

of the Dirac delta functions which in turn places restrictions on the



permeability and permittivity matrices. Not only must the permeability and
permittivity matrices be positive definite but also I/NO, 1/Nl < Kl and

1/'N1 < K_» Kl‘
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.
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5 SPECTRUM OF CHARACTERISTIC WAVES IN AN ISOTROPIC COMPRESSIBLE PLASMA

Very few problems are solvable in closed form, As has been shown, the
dipole in a nonspace-dispersive uniaxial medium is solvable, No doubt even
some relaxation of the nonspace-dispersive restriction can be made, The
biaxial and magneto-ionic problems, however, as yet have not been solved,
Numerous attempts have been made, as the literature will testify, but all
results have involved at least one unevaluated integral, The closed solu-
tions for the latter two media have not been obtained even though they are
nonspace-dispersive, The problem of a dipole in an isotropic compressible
plasma of N mobile ion species is solvable in closed form even though the
permittivity matrix is both nondiagonal and is space-dispersive, The reason
why some problems are solvable and others are not seems to lie in the form
of the determinantal equation or equivalently the characteristic equation,
The eigenvalues of the solvable problems do not involve radicals whereas the
eigenvalues of the unsolvable problems do, These observations should be more
apparent after a comparison of several problems is made. For this reason and
to further illustrate the usefulness of the spectral decomposition, it is
instructive to obtain the solution of a dipole in an isotropic compressible
plasma of N mobile ion species by the three-vector method,

First we must show that the permittivity matrix for the lossless plasma
is Hermitian, The inclusion of a static magnetic field Bo will be made since

the degree of difficulity for proof is not increased,.

Lemma 5.1: The permittivity matrix of a lossless compressible plasma with a

static magnetic field is Hermitian,
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Proof: Assuming the fluid model for a plasma is applicable the force equation

and the continuity equation can be written for each species of mobile i¢n

(including electron),

oV

mi5y 79 $+(mo /NjWVnjtq;B X#;=0 (5.1)

anj
ot

+NjV=U§=O (5.2)

h
where a, is the speed of sound for the jt ion given by

2
a, = Y KT, /m,
J J J J
Yj = ratio of specific heats at constant pressure to that at constant
volume
K = Boltzmanns constant
Tj = ion temperature
m. = ion mass
3

Equations (5.1) and (5,2) with Ampere's equation is sufficient to derive the
permittivity matrix, Eliminating the density n‘j from Equations (5.1) and
(5.2) yields

Y,

2 07, 9 (S_
—as YV + Q. = (5.3)
o2 i »U/l i 31 m; gt
where
q
Q.,:—B X (5.4)

The temporal and spatial Fourier transforms of Ampere's law and Equation (5.3)




are, respectively,

_jRxH(R.W) = JWELEK,W) + 2 qjn; Vj+ T (k,w)
J
(W -aj k k -jwﬂj)Vj(k,w) =-](U'r';\—.E(k,CU)
]

- . ql -
RiVj (k,w) = -](U-Fn—jE(k,(U)
Therefore,

- . qj —l -
Vj (k,w) = "](LJﬁi— Ri E{k,w)

2
- - . qinj -1 - -
CjexH(R,W) = jwe |I- 2 —=Rj | E(k,w) + Je(k,w)
j Mo

From Equation (5.9) we see that the permittivity matrix is

2
ajnj -t 2 _-1
=_§_°K=€°[I—2; mjéoRi]=eo[I-ijRj]

1

where

97

(5.5

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)




98

The index j is summed over'ali species of compressible ions. As seen from

. ) —-
Equations (5.7) and (5.8) and the fact that S% is skew-Hermitian for real k
and W, Rj is Hermitian. Hence, the inverse of Rj is Hermitian. It then fol-

lows that the permittivity is a Hermitian matrix, i.e.,

=
"
[P

(5.12)

This derivation has assumed that collisions are negligible (lossless) and that
the ion pressure for each species obey separate adiabatic relations,.

From the previous derivation for the permittivity matrix it is observed

that,
2 2> >
R;=(w —ojkkT) (5.13)
and then
2% T
R-' | Ojkk
T\ I - (5.14)
J 2 2 2 2
w (Oj -Ww)
Therefore, the normalized permittivity matrix is
2 2 2
W, a.w.
K={1-Z—3]1+(2 e (5.15)
- j w j W (Oyk -Ww)

th
where wj is the angular plasma frequency of the j species, expressed by

a;n
2_H) ")
Q)j - ﬂ\jej

5.1 Eigenvalues for an Isotropic Compressible Plasma

~- >
Since GE(k,w,X) and GH(k,w,h) have the same eigenvalues, it is sufficient

-
and easier to evaluate them explicitly through det GH(k,w,X) = 0. It will
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become apparent that the form of K is the simplifying factor, K is of the

-1 - -1 >
form bk kT + a, and K is of the form K 1 = 1/a [I - (k2 + a/b) 1 k kT] .
- -~ I 1
GH(k,w,l) = (-k x K~ kx - A). Therefore, the second term of K = has no
effect upon GH’ i.e.,
Gy lowA) = (- o—kxkx—A)= — 5= [Kk—tk—a)) (5.16)
Then
— k2 2
det G (k,w,A)= —=MA——-) =0 (5.17)
2
w-
From the previous section it is found that a = 1 -2 —% and
J
2 2 @
a, w,
b = b J J . The eigenvalues are independent of the com-
3 2, 2 .2 2
w (aj kK - w)
plicated term b. Since a is independent of k, both eigenvalues hl and h2
which are degenerate will have only one sheet, S1 = 82 = (kz/a = k(z)) . The
1/2
2
sheet will be propagating for w >v(Z wj) and nonpropagating for
J
w < 2 wz, /2 .
j J

In summary, there is only one degenerate transverse sheet due to the

eigenvalues for an istropic compressible plasma.

5.2 Transverse Part of the Field Due to an Electric Dipole

Since the eigenvalues Kl and Xz are degenerate, arbitrarily choose,

<t

E=Kxz, E,=kxkxz, E, (5.18)
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Also since the plasma is isotropic, arbitrarily choose the electric dipole
source orientated in the 2 direction. A magnetic source cannot excite plasma
waves; therefore, at this time we are not as interested in the fields due to

it. With this choice of eigenvectors, E, does not enter into the picture.

1
525 E,: xkx )T (aI+bk KKXKxE) = ap2k2 (5.19)
- "" ’2 ——
Ez(k,w)zjw#o(kz—okzo) k“(KxKx2) (5.20)
By partial fractions,
2 2:t-2 (| \f2 2 2 5. 91
(K-aky) k= (sz){k (K=aky) (5.21)

Therefore,

(5.22)

- -_iw’l'o e -
Ep(Fw) = gz VxVUx2 {7

5.3 Plasma Waves

The eigenvalue for the longitudinal or plasma waves is zero, This implies
that propagating plasma wave must come from the real zeros of E;'E E3. Since

E,. =k

(5.23)




101
After obtaining a common denominator and simplification, one obtains
2 2 2
2 w Wy 2w
AN A i
t - j i
EsKEs=k 2 (5.24)
2
w(K- 2y
i 0j

The supersciipt ) indicateé that the jth term is omitted from the product.

Except for the factor k2 in Equation (5.24) the numerator of E; § E3 is a
+ 2

polynomial in k2 of order N. Therefore, E3

N zeros. Since the numerator of Equation (5.24) is a polynomial in k2 with
real coefficients, the roots of k? will occur in conjugate pairs. Hence, it

is possible if all of the roots are real to have N sheets to contribute to

plasma waves., Restated, the maximum number of real sheets (that cause propa-

gating waves) for an isotropic compressible plasma is one sheet per compres-

sible ion species, This is further verified by obtaining the determinant of

§ and comparing the zeros with the zeros of E; g Es.
2 2 2.2 2
w a; Wik w
det K = - |-z__1£ > 2jziz =) ,_z___ié (5.25)
] w ] wiojk™-w) jw
The zeros of E; K 33 are the zeros of
2_w? Wi _f 2 w?
7«2~ £ (-2 -0 (5.26)
] aj i 9 ! a;
Equation (5.26) cﬁn be put into a form
7r(k2— kl’j)=0 (5.27)

J

K E3 (discounting the k') will have
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where kj is the zeros of (5.26). The product of the zeros is
2
2N w-
2 w - J
. = - —_— 5.28
J T a; ] W
< )
J
The sum of the zeros is
2 2
Z 2 Z(w -(.Uj) )
. = ——— 5.29
.kj ‘ > ( )
) J a;
) 2 2 2 . .
From Equation (5,28) one observes that for w < X wj , I kj < 0, implying
J J
that there will be at least one negative zero, i.e,, at least one nonpropa-
2
gating plasma sheet, For wz > % . if N (number of compressible ion
J .
species) is odd, there is at least one propagating sheet,
Now consider the longitudinal fields,
2 (U2
Tk -5
j a?
+ - | |
(E35E3) = 3
) 2 2 W’ Wi (.2 w?
k |{TTk - -3 +.§:-_E? m J k "—??T) ( )
i =i : 5,30
J aj i aj a;
2 2 2
I 2 W | wj _(j)f 2 w
l) ("‘0—)7,’ kK == ‘?2—77 k-—
\a . aj }gj a;
) k2 2 wz
2 2 W j (13/2 w
T - = — P
(6= +Z > T (K-
aj j aj a;
. . t -1 2
1/a is the residue of (E, K E3) at k* = 0; therefore, the second term of
Equation (5,30) does not have a pole at kz = 0,
Ea(R, W)= - jWpy(~K 2N ETKES T EzEM(K,w) 5. 31
3Lk, Wi = Jw:“o (o} ( 323 3=3 e( , W (5.31)
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- A
Melk,w) =2z (5.32)
Let.
- 1= i, =
Es(k,w)=Ealk,w)+E3(k,w) (5.33)
where
I~ Tjwp T 2
Ez(r,w)= ° VV( z ) (5.34)
sz 471Tr
0
and
2 w?
.w o zm (L) (K- -,;z__;w(z W
"~ -} T | Q. j a; ! a’
Esl(r,w)= 'u3°2 \Y fff j Vo i
(277K, 2 2 2
000 2 W wj _(j)f, 2 W (5.35)
Tk -—% *Z*ﬂr k-—% '
-kt .l 1l
e " "sinf'dkd8 d¢
Since the medium is isotropic, the integral is independent of 9 and o.
Therefore, for the sake of computation, let 6 = O and integrate over ¢I
/ 2
and O 2 w:. ; 2
. | 2 W | i )2 W
ey oors £ S RT
2 . . .
Eslr,wl=—3 - f ) ) !
(277K, o w2 w?
T k2__ Z___Jﬂ-(j) k2 w k (5. 36)
i a2 a i a
i/ o9 i
-'k
e dk

The integral should be integrated over the closed contour, C, which is a
path along the real k-axis and an arbitrarly large semicircle in the lower
half k~plane, The path should be such'that poles on the positive real axis
are included in the contour, but poles on the negative real axis are ex-

cluded, Denote all of the zeros of
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2 2 2\ "
w. R
o) 2 w ) ‘s 9
T )T )l o
op ) 19 /]
on the positive real axis and in the lower half plane by kj for j = l to N,
N
Then the denomonator of the integral of Equation (5,36) is k I (k2 - k?).
J
Then Equation (5,36) becomes,
2 2
w Wi ()2 w
N (0-”7j7' ku-;'?— -Z—O?'flT ku— 02
” -— le‘-o J J } i (5.38)
Gk : u=l ku7T (ku—kj)7T(kU+kJ)
) J
P 11114
if all of the poles are simple, In general,
jw
"~ Ko T z
Exlr, W)z 2V V S
cko C
B 9
2 2 2 (5.39)
2 W zwj Wf2 w
(0'”7]7' k"? -_27|T -——?—
aj ) g Qi - jkr
Res >
w 2 w?
2 W }
Kl ke £ +Z——’7r(’ -
j a? j a2 i a2
) ) !
5.4 Total Field Due to an Electric Dipole
- _ -~ . ! - i -
E(r,w)=Ealr,wW)+Ez(r,w)+Ez(r,w)
. X . {z.40)
- “jWp —"\/a'kor JWa, - A
E(F,w = —5— VxVxz £— — 8(r)2
ak? r ak
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jw 8

- o'k'lzio VVT( 27Tr )Z

(4]

- - (5.41)

2 2 g o 2

e P (G

: Gi ) ui ! ~jkr
Res - e

The residues inside C are on the positive real axis and in the lower half
k-plane,

Note that for N = 1 this result checks with Equation (28) of Hessel and
Shmoys,13 "Excitation of Plasma Waves by a Dipole in a Homogeneous Isotropic

Plasma,” Proceedings of the Symposium on Electromagnetics and Fluid Dynamics

of Gaseous Plasma, Microwave Research Institute Symposia Series, Volume XI,

Polytechnic Press, 1962, pp. 173. The "modal decomposition™ of their paper
is not the same as decomposing the field along its eigenvectors; however, the

relationship between the two can easily be seen. The relationship is,

A - |
E(fw) =E,(Fw)+E5(Tw) (5.42)

2

w
P Vv
V P, w) =E3r,w) (5.43)
noe(w’é-w;?) 3
'ﬁv(i?,w) is not entirely longitudinal or transverse, but y P °CE;/ (T,w) is

longitudinal,
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5,5 Pressure in an Isotropic Compressible Plasma
component is

The partial pressure variation for the j

2
. = R .N: = . .N: 4
P, a;m;n; V,KT,"’, (5.44)
However, from Equations (5,2) and (5.8) one finds that
- —]qN-‘T - -
nj(k,w) = —L % R} Ek,w) (5.45)
mj
Using R;l given in Equation (5.14), the partial pressure PJ(E,w) i3
. 2
- jayaNy 1 - s
Pj(k,CU) = k E(k,w) (5. 49)
2.2 2
(ij -w)
whereas the inverse transform of Pj(:,u) is
...Jf"_‘)_r
- a, T -
) ¢
» = - - e ———— * \\J,/:’,,
Pyr,w) N;a\ ~7 777 V' E(r,w) 7 )
Thus, the total pressure variation P(;,w) is
-ige
e "9 T_ -
——— %V E(r,wi  (5.48)
4T (r,

P(?,OJ) = ZP’(T,(U) = - Zquj
J i

es to the pressurd

Notice that only the longitudinal field contribut




107

6. RADIATION FIELD OF AN ARBITRARY SOURCE IN

A LOSSLESS LINEAR PASSIVE MEDIUM

6.1 Introduction

For the case of an isotropic medium, the radiation field for an arbitrary
current source is well known, The problem of finding the radiation field of an
antenna in a cold magnetoplasma such as an ionized gas in a constant magnetic
field has been solved by Bunkin14 and a number of workers,ls-19 However, such
solutions have been limited to a particular nonspace-dispersive media, It is
desirable to determine the radiation field for a general lossless linear space
and time-dispersive medium, It is preferred to find the general field solution
for any zone; however, as yet no one has achieved this for the cold magneto-
plasma or even the biaxial medium, For a cold magnetoplasma with one mobile
charged particle species, the problem is to solve nine first-order partial
differential equations, If a harmonic field is assumed, six of the unknown
variables may be eliminated to yield three second-order partial differential
equations in say the field variable éi . Usually the system of three equations
is attempted to be solved by the method of Fourier transforms, The solution
can then be expressed as a volume integral in Fourier space, Thus, the dif-
ficulty is a triple integral of a function with a complicated singularity,
Invariably, attempts at such a solution are expressed in at least one unevalua-
ted integral,

With the results expressed in terms of an integral,it_is difficult to
make comparisons between fields of different sources and to interpret the
physical processes. Thus, it is desirable, and for some purposes sufficient,

to find an asymptotic solution for the radiation zone, Notably, two asymptotic
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integral methods have been used in the past, the steepest descent or saddle
point method and the stationary phase method, To first-order, they produce
essentially the same results, For our purposes the stationary phase method
will be used since it will be seen to yield many physically interpretable
results, Only lossless media will be considered throughout, This is not a
severe restriction since in a lossy medium the concept of a radiation [icld
is not very significant,

First, the principle of stationary phase is applied to a very general
linear system which encompasses both space and time dispersive media, Then
the results are particularized to some systems including warm plasmas, which
are derivable from dynamical models, Notable physical interpretation of the

mathematical results are made,

6.2 Stationary Phase Method for Arbitrary N-Vector System

Consider a system of equations whose Fourier transform is

i
{o—;wg} F=C 6.1

or

77/ Fe=e (6.2)

where the N-vectors C and F are the source and field vectors, respectively,
th . - s

"Also, the N order square matrices O and U are skew-Hermitian and Hermitian,

respectively, All of the quantities may be a function of all the transform

variables. Then similarly to Section 3 an eigenvalue equation may be defined,

OFi :yqul i:|’2’. o e N (6.3)
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Analogous results concerning the eigenvalues and eigenvectors may be inferred,

Thus,

N . N
Fik,wr =y F(k,wi=u 'y s I;C (6.4)

i=1 i=1

f -1 :
where I, = (FT UF.) UF, F, and S, = v, - jw. In a form that we will use,
1 1= 1 = i 1 1 1

the portion of the field that is parallel to the characteristic field Fi’ is
- + -1 +
Fi (k,w)=(F;77?Fi) F.F.C (6.5)

with the normalization of Fi such that the components of Fi contain no singu-

larities, Therefore, the inverse Fourier transform is

?‘(-r.,t)=(277)_4,[[f (FT7F, 'E R ce!™T TN Phaw 6.6
- QW .

The field solution as described 2bove is not unique in that an arbitrary source
free solution may be added to it, Furthermore, we wish the solution to describe
the physical model, Thus, all waves must originate at the source and no source
free solutions are permitted, = In order to obtain such a unique field a "radia-
tion condition" must be enforced upon the class of possible solutions, Now the
solution is a frequency épectrum of time harmonic waves as the outer integral
of Equation (6.6) stipulates, Let it be required that each of these component
harmonic waves obey the gradiation condition," And let the Fourier frequency
variable, w, be slightly complex, i,e,, replace jw by s = g + jw where g is

small and positive, Denote the frequency component field by £
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@
—t - = _'-.:*
f (S'r)z(ZW)Z)ff,ﬁFifmFi’ FFTcels ) ¢y (6.7)
-®

With this, after the evaluation of fi(s;F), the required field for the physical
problem is,

@®

?Et)=(2v7'f[mfi(s’7)] dw (6.8)
-

S+jw

The reasoning for the mathematical manipulation of the Fourier frequency variable
is as follows, With O positive the harmonic frequency component fi(s;?) is
increasing exponentially with time, Now if a source-free wave of finite ampli-
tude is propagation from infinity then by the time it reaches a finite distance
from the source it will be small compared to the exponentially increasing com-
ponent fi(s:;), Thus, if only the exponentially increasing waves are sought,
the source-free waves will be omitted, Taking the limit finally produces the
Fourier frequency component satisfying the ''radiation condition,” Let us now
asymptotically evaluate fi(s:;) for large r,

The denominator (Fj-?q Fi) is changed with the introduction of the new
variable s, and its new form is approximately,

[FT?IZF;](sj)z[FT mﬁ](so,—fo)«tdsgg [F;f F;](s,-f)

(sc,y0
(6.9)

+d7 VY, [F,Jrnl F,] (5,7)
So1 7,
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If (s_,Y)) is a root, i.e., [FIWFl] (s,,Y) = 0, then for [Fi 7/; Fi] (s,Y)

to be zero when s = s, * ds requires that

Y= 7°—d7=70— ds ;3% [Ff‘?fﬁ] (5,7)?/? V;[F;V?/Fi] (5,7) 5 (6.10)
S0, 70

- -
Let s, = Jw, Y= jk and ds = 0, Then the new root is shifted to

\
i e d [t oe g et -
s=0 +jw,Y=jk-O a—[ﬁ”jl—‘i](w,k)r rV;[Fi//]F;](w,k)) (6.11)
w
-

Since the operator Z? is skew—Hermitian, the new root Y has been shifted off
-
the imaginary axis, With this in mind, perform the first integration of fl(s,r)
> A - -
on a variable k3 = k.r which is parallel to r with the transverse variables ki

held fixed, Evaluate the integral by the contour integration method, By the

Cauchy residue theorem we have,

iR
f(F?WF; 'FFce™ i g, +f(Fi*777 F) 'R Flces ™ Tingy,
R L (6.12)

= -2 Z residues of poles in the contour

where L is a semicircular path of radius R in the right half plane in the clock-
wise direction, Then by substituting -Y|y for p and r for t in Lemma II of

Transform Calculus by E, J. Scott,20 we have

J}n/ f(FrWFI )’|FiFi*Ce(s'-7" r)d7“=0 (f)O) (6.13)
R+
L

1

- + K
provided the components of I(FI Z7 Fi) FiFi C eSt are less than M/ | Y"l

when I Y"| >R, where M, K are constants and K > 0. Therefore,
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jR
- (st— Yyr)
Lion f(Ff??/Fi) 'FoFTce T May,
R+w
-iR
(6.14)
=—27rjz residues in right half 7, plane
or ©
Ve - 1_k )
f(FJ/?ZFi) 'FiFTce™ T g,
-
(6,15)

=—27TZ residues in right half 7, plane

But it was previously noted that the poles in the right half plane are the poles

A 1 T d + -
such that r~V;[Fi WFi](w,k)/sz)[Fi %Fi](w,k) <Ofor 0 > 0, Since the source,
C, is assumed to contain no singularities, then for simple poles the residue at
a pole is
. -1 (st=Y-r)
(r-VyFi*W/Fi ) Fi Fit Ce s r (6.16)

Thus, we have

- > >
> . -2 A s (Wit -k-
L tils 1) = J(2TT) ff <r-vk[Fi+7?FJ(w,k) Fi che’( ’ k')dzkl (6.17)
s»jWw
ZH.
: . . . . i + >
where Zi+ is the portion of the dispersion surface in which FiZ7F€ (w,k) =0

and ?.v;[afw Fi](w,F) /5% [F?‘???Fa} Wi ) <o

Now perform the last two integrals by the method of stationary phase, Hence,
the major contribution to the integral for large T is from those points on

- - -
Zi+ where the exponent k.r is stationary, These are points where V“E ker = O

—-
or, equivalently, points where the normal to zi+ is parallel to r, 1In the

o > -

vininity of a stationary point kK’ we can express k.r as a second-order surface
o

in the variables transverse to r, Let the transverse variables k and k

11 12
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be in the principal directionms, Becauee'ﬁf; is stationary and k and k

11 12

are the principal directions, k, , k,, and k |, form an orthogonal coordinate
-

system, Also, let Pix and sz be the curvatures of the k surface at the sta-

tionary point Ek associated with the principal directions Xk and

-

k
11 12?
respectively, A positive value of curvature implies a concave curvature to ;a

. . . - .
whereas negative implies a convex curvature to r, Then we have approximately,

. 2 2|
kg *[% P itk = kyk) % P o (k o=k oK) ] v (6.18)

By the principle of stationary phase the asymptotic form for r approaching

infinity is,

. - . - A~ [ - \-t W1t =Kyt
w fits, NIRRT Y\ |F 7y Fi](w,k) Fric| @I
s—j K - - -
k= K
a1 2 2 (6.19)
.ffe‘l'é Pty ki I+ Paxlk 2 ko ) |
—©

where E:represents the sum of all stationary points on Ei+' The integral in
Equation (6.19) can be evaluated after possibly slight modification from most

integral tables, Hence,

-1
.
. - - -j—(sgnP, P,)
.wfi(s,f)xj(ZW) lz ?’VI[F:W Fl] Fi F:C —\/—_':—e Jaisannrsants
s—=+j K
r/1AP2] ©.20)
HWt-ker)
e

.21
But the product of the principal curvatures is the Gaussian or total curva-

Sl
ture, i.e,, PPy = A Therefore, the asymptotic form of the field EF;(r,t)
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for r approaching infinity is

.
? (r t) =~ ](277) fz v-o[ WF:| F F C— ‘)? (sgn P,+sgn p2)
«/|7C|

j(UJ? r)dUJ (6.21)

And of course the total field for the system is,

N
FEN =) FTH) (6.22)
i=|
- - jwbt
For the special case of a time harmonic source Cf(r,t) =C(r) e , the
Fourier transform is
Clk,w) =27 C(K)S(w-w,) (6.23)

where © is the Dirac delta function. With this equation, Equation (6,21) is

easily evaluated to give

-» ~ - . . .
FEen= f'VR'[FiW/F;] (W k)| FiFfc()—L — g ialsanfirsenfy)
K

27Tr\/|—%_|

- (6.24)
) Wot k1)

6.3 Application of Section 6.2 to an Arbitrary Six-Vector Electromagnetic System

The general description of an electrodynamic system can be expressed in

terms of Maxwell's equations (Faraday's and Ampere's laws) and an auxiliary set
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of equations, The auxiliary set of equations may be partial differential,
integral as the expectation of a Boltzmann's current, or simply an algebraic
equation as the Lorentz equation for moving coordinates, However, the aux-
iliary set will be coupled to Maxwell's equations by common variables, Thus,
often times when only the electromagnetic field is desired, it is convenient
to eliminate all the variables except the electromagnetic field variables

’3‘0 = {8,7"{} . In doing so the partial differential equations usually become
of higher order and other complications set in, Alternately, the space-time
Fourier transform of the general linear system of equations may be taken and
the extraneous variables eliminated by algebraic means to produce a six-vector

equation of the form,

OF - jwuF+C’ (6.25)

Ovﬂ
v 0 | and jf , respec-

tively, c’ is the Fourier transform of the equivalent source involving all

where 0 and F are the Fourier transforms of é} = {

of the sources of the original system of equations, And the sixth-order square

matrix U is defined to be the constitutive matrix for the relationship F_ = UF,

f

where Ff is the Fourier transform of 3£f = [i;)@?l . Now Equation (6,25) is of
B

the form Equation (6.1) of Part 6,2 if the electrodynamic system is lossless
and the constitutive matrix, u, is Hermitian, Thus, the results of Section 6,2
follow, For this situation, however, as seen from Part 2,5 the quantity

\Voe topn - | )
K F;”?’]J can be reduced further, i.e

Vi [ 21%r, - 2B+ By (.20

et mi
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PTi’ Pei’ and Fmi are the total, electromagnetic, and medium average power flux

.th e s .
vectors, respectively, for the 1 characteristic field, The mathematical

definitions of Eei and Emi are repeated for the sake of lucidity,

-Fsei=R_e(EXH*) (rms) (6.27)

Pmi= -

1}
r\>|€
-
_'
<]
=4
C
M

(rms) (6.28)

Also from Section 2,5 it was noted that 5&1 is normal to the dispersion surface
. . .th C s .
and is related to the group velocity of the i characteristic field, Hence,

the radiation condition implies that

A

r- Vgi > 0 (&.29)

A - —
or that r.P_. = I PTi| > 0 at a stationary point, Further, normalize the
characteristic field Fi such that the length of its total average power flux

-
vector is equal to one, Define the number h(k) to be as follows

1
hK) = (I%U ze‘i%(sgnp'+sgn Py -2) (6.30)

Using the above considerations the asymptotic expression for the characteristic
-
source field Sf i(r,t) for the time harmonic source as given by Equatiorn (6.24)

reduces to

_Jh(_k.K)

HWgt =Kk 1)
4Tr

F G N=Y

K

F;TCl(;K)Fi e (6.31)
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The summation is over all stationary points on 2i+. And again the total field

is given by

6
FEN =) FT (6. 32)

‘e
l-

Note that this derivation is very general in that the only assumptions made
are that the electrodynamic system is lossless and that the medium and the

source are such that the condition for the contour integration of Part 6.2 is

satisfied. Also, note that Equation (6.31) gives the electromagnetic field

due to any source of the original system of equations and not just due to the

/
electromagnetic sources since Cf is an equivalent source involving all of

the sources of the system,

6.4 Case of a Compressible Plasma with N Species of Charged Particles

Assuming the fluid model for a plasma is applicable, the linearized

equations that describe the system are

vxE:/“O“aaT;bl—/m (6.33)
3 N
Vx7¥=€o—aT€+z Pai?i+ fe (6.34)
i=l

J ' "
p"‘i-a_t?/;: Pq; € +PqiVixBo = V@ =F ,i=1 to N (6. 35)

' T
Ea,_pj*'yi PoiV ;= -2, ,j=1 to N (6. 36)

where the quantities and their Fourier transforms are
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(Fourier transform)
E & electric field
H # magnetic field
Je A?e electric source current
Im )7n1 magnetic source current
P density of the j@
mj mean mass density o e j charged component
Pq] mean charge density of the jth charged com-
ponent
Vj %ﬁ velocity field imparted to the jth charged
component by the sources
= 6D . . .th . .
) j variation of the j partial pressure imparted

by the source (normalized by the number density)

ch mean partial pressure of the jth component (norm, )
Fj SfJ source term for the jth force equation
Qi gzj source term for the jth continuity equation

75 ratio of specific heats at constant pressure

and constant temperature for the jth charged
component
B0 static magnetic field

Equation (6.35) is the force equation and Equation (6.36) is the normalized
continuity equation since the pressure is assumed to be proportional to the
number density to the \Gth power. A number of assumptions are involved in
arriving at the above system of equations. First, the equations have been line-
arized and hence will more accurately describe reality for small variations,

The medium is macroscopically homogeneous and of infinite extent. A scalar
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pressure for each charged component is assumed; hence, shear wave will not be
evident in the solutions, Separate adiabatic conditions for each species of
charged particles are assumed. The latter two assumptions are equivalent to
the conditions for truncating the moments of the Boltzmann's equation, Also,
collisions are negligible. These assumptions are not unlike those used by
many investigators, however crude the model may be.

Now let us show that this system can be developed into a special case of
Part 6.3. Thus, one must find the constitutive relationship. After taking
the Fourier transform of the system of equations, eliminate the velocity and
pressure variation variables. In doing so, one arrives at the pair of vector

equations,

N N
. =~ . 2 i . wihe
jRXH = jw[€°I+Z,%an]E+[Je—]Z PanRp k Qn

n:‘ n=|
(6.37)

N
. ~{
-wgpq,ﬁn F:]

-jkx E :’jw/'LoH’Jm (6. 38)

2 T

Lo . . - (- W ‘w0 + P ¥
where the matrix Rn is defined as Rn ( P I+ pqn Bo X+ Y on )
and I is the identity matrix. From this it is easy *o see that the constitu-

tive matrix and the equivalent source are

N
2 -l
[€°I+Z pann] 0
n=l

U(K,w) - (6.39)

0 I
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NG . N , |
) T, —jZPann kQ, —jw ;quan F
Cc'(k,Ww) n=l

(6.40)
Im

-
Since Rn is lievmitian for real k and w, then

nc

is Hermitian and Equations (6, 31)
and (6.32) for the radiation field apply for a time harmonic source,

Refer to Lhe scction on General Formulotion ol Spectrum of Characteristic
Waves for a discussion of the eigenvalues and cigenvectors,

It has been determined that the radiation field is due to the stationary

points on the surface Fl-z7 Fi = 0, However, this is also equal to

t - t _ . t _
Fi MFi= SiF{UF; =W, -jw)Fj YF; =0 (6.41)
Therefore, for the longitudinal waves when v, = 0, the quantity FI U Fi must
be zero and its surface found, Another apparcnily added difficulty is that the
gquantity F:C' may contain singularities whenever the matrix Rn becomes singu-

lar, However, after a bit of algebra it can be shown that

N N
FIC s EfT, + HITu+ 2 VEFa+ 2 (Pm/rnpon)*on (6.42)
n=i n=t
and thus can be made to contain no singularities with the proper normalization
of the eigenvectors,
Greater consideration will be made for the case N = 1 in a later section
by the ten-vector method which is in some respects more desirable,
Note alsg that when N = 1 and pon = Pn = 0 the usual cold plasma model

used by numerous investigators results, Observe that the constitutive matrix



121

is not a function of the wave vector, Thus, 5& = Pe or ﬁﬁ = 0 and the normali-
zation is adjusted accordingly, This case, too, will be discussed further in a

later section,

6.5 Case of Compressible Plasma with N Species of Charged Particles

(6 + 4N-Vector Method)

Consider the same system of equations as described in Part 6.4, Naturally
the assumptions involved in arriving at the equations are the same, Now, how-
ever, let us operate upon the equations in a different manner to obtain the
solution, Instead of eliminating some of the unknowns, we will keep all of the
unknowns and seek the solution of a matrix equation of order (6 + 4N), This
manner of seeking the solution does not seem to have been considered by inves-
tigators before, For this reason and since there is a good correspondence
between the mathematic and the physical behavior, the (6 + 4N)-vector method
will be dwelt upon extensively, We wish to transform the given system of equa-
tions into a matrix equation that will be a particular case of Part 6.2, The
ordering of the equations and the normalization of the unknowns will be critical
although not unique, The motivation for doing so is to satisfy the conditions

of Part 6.2, i,e make O skew-Hermitian and U Hermitian,

°9
Order the equations in the following manner:

1. Ampere's Law

2, Faraday's Law

Force equations for particles 1 through N

4, Continuity equations for particles 1 through N

The continuity equations are to be in the same order as the force equations,

In addition, place all the terms involving partial derivatives with respect to
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time and the sources on the right side of the equal sign with the remaining
terms on the left, Moreover, define the normalized quantities, an as,

Uy =Py /Y, Pon) n=i2, " -+ N (6.43)
. . th . .
Then the above directions produce the 6 + 4N order matrix equation
67’:@—6';&”*7“‘3 (6.4
which is given in Figure 6,1, The corresponding terms should be obvious,
Notice that already we have gained a benefit, for the conservation of total
energy 1is expressed as,
T T~ ) .
FOF-FF+7F'E (6.45)
or
T 0 0 e
V' ®Pr==UWr —= 47 (6.46)
ot ot
where
N
Pr=ECx¥% +) Yy Pon UnVs (6.47)
n=|
T A T N 2
9 1 .
dy? =3 [Gof? Ef’/*o?# 7#1-}5 Pmn‘b% b%4-§: K1anztn} (6.18)
n=| n=i
and,
T b, T N T N 1
FG D tr [EPet good UTE L UL, | 0
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Now the Fourier transform of Equation (6,44) is
OF = jwWUF+C (6.50)

where O is 6} with the del operator, V¥, replaced by -j§ and U is

€O
Ho
e
sz
. (6.51)
u o= .
7 Po
INPon

Now it is easily verified that for a real wave vector k the matrix O is skew-
Hermitian, Not only is the matrix g Hermitian and diagonal but it is also
positive definite, Therefore, the conditions of Part 6.2 are satisfied and
the results for the radiation field follows, Because of the symmetry of O and

U, the usual type of eigenvalue problem can be defined,

iz1,2,°+ ,6+4N (6.52)

{ ]

Since O and U are not a function of w and are of order 6 + 4N, the 6 + 4N eigen-

- R
values will be a function of k only, They will be imaginary for real k, Define

the real valued surface EX to be the locus of points (k, —jxi(k)) in four-
i
space, Then for a given w = W, the intersection of the two surfaces E). and
i
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—jxi - wo = 0 in four-space is a curve, But this curve in four-space is

—
equivalent to a surface in three-space ( k space) which is commonly called a
sheet of the dispersion surface at @ = wo. The totality of all these surfaces

in three-~space for all i = 1,2

’ ,..;, 6 + 4N is called the dispersion surface at

angular frequency w = wo. However, at a given frequency the plane —jxi T, = 0
may not intersect Z:X ; therefore, there may not be 6 + 4N real sheets to the
i

dispersion surface at a given frequency. As w takes all real values, the curve
in four-space which is the intersection of EX and the plane —jki -w=2~0

th 1
generates the 1 sheet of the dispersion surface in four-space, This is
equivalent to relabeling the -j\ axis as w.

Recall that for source free solutions it is required that

N
det[0~ Tw_q] = (det U )67"7’4

(x;—jw) =0 (6.53)

-

But det 2 > 0; hence, all of the sheets of the dispersion surface are asso-
ciated with the eigenvalaes of the characteristic Equation (6,52), Therefore,
there is a one-to-one correspondence between all sheets of the dispefsion sur-
face Si = Xi - jw = 0 and the eigenvalues of the characteristic equation, This
is in direct contrast to the six-vector method in which the factér det Efﬁ;w)
may be zero and contribute to sheets of the dispersion surface, Further

..I-

remember that it was possible for Fi E(E;w) Fi = 0, for some i of the six-
vector method to coincide with a sheet(s) of the dispersion surface, But
for the 6 + 4N-vector method, FI_E Fi = 0 if and only if Fi = 0 since E is
positive definite, This one-to-one correspondence between the sheets of the

dispersion surface and the eigenvalues is one of the advantages of the 6 + 4N-

vector method,
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Another property of the dispersion surface can be determined from the rcal

valued property of the fields, i,e,, both ‘F and C}QP are real valued vectors,

The real valued property of the field implies that

o(k) = 07 (-%) (6.54)

Therefore,

det [om = (k) g]= det [o*(-'i) - M)g]:o (6.55)
Which implies that

ser [ ok - (r) u]

= 0 (6,56)
and finally
> >
det | O(k) = (-\(-k))y | = O (6.57)
Hence if xi(E5 is an eigenvalue, there exists a j such that xj(;) = - xi(J;)

th
is also an eigenvalue, From this we have that the i and jth sheets of the

- -
dispersion surface are Si = Xi(k) - jw = 0 and Sj = - Xi(-k) - jw = 0, res-

. - -
pectively, Thus, if either point (k,w) or (-k,-w) is on the dispersion suriacc.

then both points are,
-
The 6 + 4N eigenvectors which are a function of k only also display an
orthogonality property, This property is

FTUF, =0 for X\ # ),

j i,j=1,2,7 6+4N  (6.58)




r'
l.

127

But even for a degenerate system one can define a set of orthogonal eigen-
vectors., Thus, it will always be assumed that the eigenvectors form a mutually

orthogonal set, i,e,,

M
—n_+
c
et
1]
O

(=T

LiFE i j=1,2,-° -6+A4N (6.59)

Another property may be surmised by examining the original real system of
equations, In a lossless system the property of time reversal essentially
states that if the time axis were suddenly reversed then the system would re-
trace its path of operation. That is, time reversal is expected if the system

is invariant under the following transformation,

t  — -t
g€ —— £
¥ — % | (6.60)
Vo —-V

b
s

w
o
1
oY)
o

That time reversal is expected for our plasma model is easily verified. Thus,
it is anticipated that time reversal should manifest itself in some manner in
the eigenvalues, eigenvectors and the dispersion surface, If the Fourier
transform of a function f(;,t,Bo) is g(ﬁ,w,Bo), then the Fourier transform of
the time reversed function + f(;;-t,-Bo) is + g(K;ﬂw,—Bo). Therefore, for a

characteristic field the time reversed characteristic field is as follows,
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TABLE II
Ei(k,\i,Bg) E;(k, \;,-B,)
Hi(_‘:,Xi,Bo) -Hi (I‘l xi’-BO)
Xi - xl
Vni(k, X|, Bo) -Vni(k, X; ,-Bo )
unﬂksxi:ao) unﬁk,kh-Bo)
Characteristic Field . Time Reversed Characteristic l'icida

[t i1s easily verified that if the characteristic field satisfies Lhe cigoenvaloe

cquialron, the lime reversed characteristic fiold does also, Hence, il the
vharacleristic fields are known for all i such that —jxi > 9, then thc oihcw
half is known by the property of time reversal, With respect to the dispersio,
\g .
surface, time reversal implies that if point (k,w) is on the dispersion suef.ac.
-

then (k,-w) is also, Time reversal together with the real valued propeity

> > .
implics that if point (k,w) is on the dispersion surface Lthen point (-k,w) is
alsuo, Thereltore, the three-space dispersion surflace at a given o has the
symmetry of reflection through the origin, 1In addition, time reversal and the

E 3 -~
real valued property implies that if any one point of the set (k,w), (k,~w),
- - _ .

(-k,w) and (-k,-w) is on the dispersion surface then ali points are,

Since the group velocity of the ith characteristic wave is
Vis; Vi -jwy

Va: =
gi
é?—-si :§2- (A\i-jw)

(6.61)

- iV
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then the group velocity of the time reversed characteristic wave is
‘7;'01; -jw)
\bifrz - a
_(‘)tl -jw)
aw (6.62)

[ e
iV
s —Vgi

- .

Therceltore, if a characteristic wave at (k,w) satisfies the radiation condition,
. - &
then the time reversed characteristic wave at (k,~w) does not. And (~k,-w)
-
will satisfy the radiation condition but (-k,w) will not, Thus, when the exact
total field is sought, the sum (integral) of characteristic waves must be
- L 3

taken in such a manner that points (k,w) and (-k,-w), which satisfy the radia

- -
tion condition, are included and points (k,-w) and (-k,w) are excluded. This

may mean that the contour of integration must be chosen appropriately,

6 6 Case of a Compressible Plasma with N = 1 Species of Charged Particlos

(10-Vector Method)

th
For the case of a mobile electron with an isotropic pressure, the 10

order determinantal equation reduces to

-\€o  -jkx -Pq 0
Kx Shpg o 0 (6.63)
=0
il
0 0 YP, ik -AYP,

After considerable algebraic manipulations it is found that the equation becomes
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-
i
(YPO)(Pmpoeo)s[)\'o*' {(2+8)y2+3w§+wﬁ}x8+{(|+28)y4+(4+8)w§y2 I
]
2wiy2 +S WAL+ WEWE + 3wy x6+{8y6+28wﬁy2€,2
i
+[(|+28)w§+ wf.]y4+[(2+8)w£+wﬁwﬁ]y2+wﬁwﬁgz+w§} Az . 60) I
+{wﬁw,ﬁgay2+8w§§2y4} )\2} =0 l
1
where  WR = AL [Pm€o Wi = Pq Bo [Pm 8 =7 Py [P l
]
and y = ck = (£,M,0).
]
The eigenvectors corresponding to the nonzero eigenvalues are
]
E = P (AP (NZ 42 DpX + 5FTIV (6.65)
]
H = jPq ¢ \WR) T X A+ Dy XV (6.66) l
V=V (6.67) l
u=je) '3V (6.68) l
1
i
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l or explicitly
l (2 g2 ‘ o1 |
Ey = (Pm /2P| 02+ 3¢ )v,+(-AwH+8£77)vy+8£§sz (6.69)
[ 2 2
' Ey = (Pm/qu) (Awy +EEMIVt (X + 3V + B'r)gvz] (6.70)
2 2 ,
l E, = (Pm /XPq){ae;v, +3MLvy+ (N + 8¢ )vz} (6.71)
l Hy = (quc/xwﬁ)L-ngv, - ;)‘vy‘»'r/xvz] (6.72)
. -4
. . 2.0 ' :
l Hy = (;ch/wa) LAV, -ngvy-fxvz] (6.73)
. H, = (jP, c/)\wz)—({w -m}v + {iMw +€HV} (6.74)
z q N7 H x 77 HT6A Yy ~
V, = xz{xs—[(;—S)fnj;%gz>-2(y2+w§)]x3+sz:'rgf
l - . 6.73)
2| o
~(y? + w1 (-8)() +§2)-<y2+w§,>]x+wﬂsmy2+ wii}
l v, = xz{—wH " +(1-8)7]&\3—wH{Zyz-‘T)z-(!-S)gz+w§}k2
V ' - (5.78)
| +u—sme(y2+wﬁn.-wH[(yz-nz)(wa%;—u-a)y‘gz]}
7
l Vg = C)‘{(f"s"ﬁ)\"*awﬂ 'T)7t3+€[(l~8‘l(y2+a}§)+ win) &
- | i (6.77)
: . - (.1~,7i i-gyz + 1’.1.1'244’). * (J);i £ f{z ?
' = j(kc)’itsvx FMVy ngJ! | (6,78)
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The remaining two eigenvectors corresponding to the eigenvalues which are
identically zero are
‘o ->
Fg = Q, k‘, O.,O ' (6079)
and
—O’ . i
Flo=|k,0,0,iPq/7Ps | (6.80)

The actual process of computing the "patterns" at a given frequency w and
distance r is not difficult, Only simple algebraic and differentiation opera-
tions are involved, However, even for this simplest warm plasma model either
a computer or fortitude must be used because of the complexity of the alge-
braic quantities, Tlie following is a brief outline of the steps involved in
computing the "pattern,"

(1) Determination of the dispersion surface; From the determinantal
Equation (6,64) it is seen that the dispersion surface in k-space is a surface
of revolution and has at most three real sheets, Therefore, the dispersion
surface may be found by obtaining the six roots of y with 6 = cos-1 t/y) as
a parameter ranging from-zero to 27,

‘ —

(2) Determination of stationary points for a given r, The stationary
points are those points in which the plane tangent to the dispersion surface
is perpendicular to r, This is equivalent to points on the dispersion surface

- A . .
such that Vﬁ:(k-r) = 0, which reduces to %5 [k(e) cos (B - aﬂ = 0, (a is

A A
the angle between z and r) since the surface is a surface of revolution, Hence,

. A A
the stationary points lie in the plane determined by r and z, The stationary
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points that satisfy the radiation condition must also satisfy the condition
* A

k.r > 0, The stationary points may be found either by use of a computer or

graphically,

(3) Determination of the Gaussian radius of curvature, The Gaussian
curvature A is defined as the product of the two principal curvatures

pl and pz. Since ¥ is a surface of revolution p1 (meridian curvature) and p2

(parallel curvature) are given by

2 2 .
= (kZ+2k' kK" (kB k)3 (6.81)

Py=k'sin Q csc B (6.82)

_’
where the prime denotes the derivative with respect to 6. Point k on > is a

stationary point; hence,
-1 -1 2 12 -y,
k cos(@-8)=-(k) sin(Q-8)=(k"+k ) (6.83)

From Equation (6.83), one finds

92 | 2e 2k k) (kB kP (6.84)
d8
and
b=k cos (a-8) el (6.85)
Then it immediately follows that
Hek'yg' 92 (6.86)

°d8-
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where
Kq T hosin Acsc Qsec (a-8) (6.87)
(4) Normalization of the eigenvectors. The normalization process
Re[EXH*# rpouv*] | (6.88)

as a general function is a rather formidable task, however, is simple pointwise
on a computer,
Needless to say, the remainder of the pattern calculations are rather

trivial,

6,7 Case of a Cold Plasma with N = 1

Although the cold plasma is a particular case of the previous warm plasma
and may be found accordingly, drastic simplifications make it quite feasible
to find the radiation 'patterns’ without the use of a high-speed computer,
First the determinartal equation becomes quadratic in k2 and the usual Appleton-
Hartree equation results, The dispersion surface then can be found by a
graphical method of Deschamps and Weeks,22 Also both the stationary points
ard the radii of curvature can be found graphically, Furthermore, the polari-
zation ellipse of Hi has one axis 1n the plane (;:HO) and the qther perpendicu-

23,24

lar to it, 1f the axial ratio is tan B, the angle (3 is simply related to

. 2
0 and to the usual ionospheric parameters X = wi/w and Y = wH/w by

tcn2[3=2 ccs Besct B =)y (6.89)
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The two solutions give the polarization ratios to the "ordinary" and "extra-
ordinary"” waves, For the usual definition of the "ordinary" wave (the sheet
.
of the dispersion surface for which k = ko V.l—x when k-H0 = 0) the major
-
axis of the H-ellipse is perpendicular to the plane (k,HO). The major axis
-
of the H-ellipse for the "extraordinary" wave lies in the plane (k,Ho). The

normalization requires that

[Hi|% = (k 7wpg) cos (a-8) (6.90)

The vector Ei follows form Maxwell's equations

E, = -(I/w) € 'kxH, (6.91)

The above brief description along with Equation (6.31) should prove sufficient
to find the radiation field of an arbitrary antenna in a cold plasma,
The principal advantages of this method of obtaining the radiation fields
of an arbitrary antenna, over that of previous authors arec:
(1) A high-speed computer is not necessary,
(2) Functions of an indeterminant form at the principal directions such
as in Bunkin's and Keuhl's solutions are not involved,
(3) All terms of the éolution and e normalization are easy to
interpret physically,
It would be interesting to display the dispersive property of the medium by
showing a diagram éf the four-space (ﬁ,-jk) dispersion surface, however, such
is not possible, Fortunately since the ;;space dispersion surface is a surface

of revolution, the dispersive property of the medium may be illustrated by a
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diagram of (kp’kz’ -j\). Figures (6.2), (6.3), (6,4) and (6.5) show the

sheets of one quadrant of such a surface in which wH/wN = 2, The sheets of
the dispersion surface in the other quadrants are mirror images in the quad-
rant planes, Since there are nine eigenvalues, the remaining sheet is -j\ = O,
With the dispersion surface represented in this manner, there are only two

topologically different dispersion surfaces, wH/wN 2 1, Notice also that the

Because of the complexity of sheet Zx
2

sheets touch only at -jk = 0, + w .

in Figure (6.3), perhaps a verbal description is in order, There are four
values of -jX that correspend to important points on the sheet., The sheet

. . . o1 2 2.3 . .

intersects the -j\ axis at -j\ = 3 (wH + 4@N) - wH which is called cutoff,

At -j\ = wN, ZK. intersects the light cone with the portion of the surface for
2

3N < wy "inside" and for -j\ > w

N "outside”" the light cone, -j\ = wy is an

asymptote for the intersection of X with the (k -j\) plane, And
A z?
2

' 2 2.1 .
»—JL = (wH + mN)Z is an asymptote for the intersection of Eh. with the (kﬂ’ - \)
plane, In the neighborhood of -j\ = wN, ZX changes most rapidly, ‘‘here is

2
a "plateau’ at -j\ = wy which is widest in the k dircction and disappcars in

the k direction,

The intersection of planes -j\ = w with the dispersion surface is what is
called a CMA diagram (Clemmow, Mulally, Allis). They are represented by the
dotted lines in the figures, The intersection of a plane passing through the
-j\ axis with the dispersion surface yields a Stringerz5 diagram, which is
represented by an alternate dot-dash line, The curves corresponding to either
side of the removed sector is a Stringer diagram,

One of the advantages of the dispersion surface represented in this manner
is that it is emphasized that there are more than one "ordinary’ and "extra—‘
ordinary' sheets, Sheets =

and 2). correspond to the "ordinary' sheets

Xl 3

f
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L}

kp

Figure 6,2, One quadrant of sheet ZX of the dispersion
1

surface for a magneto-ionic medium, (wH = 2mN)

-
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Figure 6,3, One quadrant of sheet ZX of the dispersion surface
2

for a magneto-ionic medium, (wH = 2wN)
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Figure 6,4 One quadrant. of sheet zk of the dispersion surface

for a magneto~ionic medium, (mH = ZmN)
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N . —j)\=UJ

Figure 6,5, One quadrant of sheet X

g of the dispersion surface

for a magneto-ionic medium, (w

g = 2wy)
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while Z:X and Z:X correspond to the "extraordinary" sheets, Also sheets
4

2
b and X are of left hand polarization while Z:X is of right hand polari-
3

M M

zation, Furthermore, the portion of ¥ "inside" the light cone (-j\ < wN)

Xz
corresponds to right hand polarization while the portion "outside" (-j\ > wN)
corresponds to left hand polarization,

Briefly, let us consider the major differences in the dispersion surfaces
of the warm and cold plasmas with one mobile charged particle species, First
the warm plasma system matrix can be expressed as a bordered cold plasma system
matrix, Hence, the ten warm plasma eigenvalues will alternate with the nine
cold plasma eigenvalues, Likewise the sheets of the warm plasma dispersion
surface will alternate with the sheets of the cold plasma dispersion surface,
The sheets of the warm plasma dispersion surface do not touch at ~j\ = WOy but
may touch elsewhere, And the warm plasma sheet corresponding to Zk’ is not
limited to values of -j\ between 1 (wz + 2)é - w and ( 2 + 22)é but

2 |@g * ey H “g * N
—
extends to infinity in the -j\ direction, That is, -n this sheet for large

k, -j\ becomes large.
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7, CONCLUSIONS

A phenomenological approach has been used to investigate some properties
of linear passive media, Properties of fields that can propagate in linear
passive media were postulated and from this properties of the media through
the Touricr irvansform of the constitutive matrix were deduced, The concept of
o positive real condition on the constitutive relationship for linear passive
media was introduced and some of its implications were considered, Also, the
concept of causality,which is more fundamental than the group velocitv concep!
and which is necessary for rcalizable media,was considered, pariict 'nitty fov
the case of dsobtropic medin,

A general foraulation of ihe spectrum of charocteristic wever in looe!e
linear passive media has been madce, The fields due (o aii arbitrav; source ¢
be separated into components parallel to the characteristic waves by using an
orthogonality condition for the characteristic waves of the medium, The cow
porents of the source field are dependent only upon the portion of the source
parallel to i(helir characteristic field and to their own sheet(s) of the dis-
persion surface, The theory has been applied to the problems of longitudinal
and transverse electric dipoles in a general time-dispersive uniaxial meditm
and to an electric dipole in an isotropic compressible plasma with N species
of charged particles to obtain exact solutions,

Finally, the radiation [licld of an arbitrary source in a lossless linear
passive medium has been obtained by using the spectral decomposition of the
fields and the stationary phase method, It is shown that by normalizing the
length of the Total Poynting vector (electromagnetic plus medium) to unity

for each characteristic field, a concise and physically interpretable
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expression for the source fields is obtained, The radiation field for a time
harmonic source was found to depend upon the Gaussian radius of curvature, the
reaction of the source with the normalized characteristic field, and the char-
acteristic field at each stationary point on the dispersion surface, These
results have then been applied to an anisotropic compressible plasma ahd to a

magneto-ionic plasma,
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